Advertisement

Structure and microwave dielectric behaviour of low-temperature-fired Li2Zn1−xCoxTi3O8 (x = 0–0.07) ceramics for low temperature co-fired ceramic applications

  • Xiaolin Jing
  • Hua SuEmail author
  • Yulan Jing
  • Yuanxun Li
  • Xiaoli Tang
Article
  • 10 Downloads

Abstract

Low-temperature-fired Li2Zn1−xCoxTi3O8 (x = 0, 0.03, 0.04, 0.05, 0.06, 0.07) ceramics with 1.5 wt% Li2O–B2O3–SiO2–CaO–Al2O3 (LBSCA) glass as sintering aid were attained through a traditional solid-state-reaction method, and the relationship between their structures and microwave dielectric properties were thoroughly investigated. X-ray diffraction patterns revealed that the solid solutions composed of Li2ZnTi3O8 and Li2CoTi3O8 were produced. The main peaks were identified with the cubic spinel phase of the Li2(Zn,Co)Ti3O8. Co substitution successfully lowered the sintering temperature of Li2ZnTi3O8 to approximately 900 °C and accelerated its densification when LBSCA glass was used as the sintering aid. The cobalt content considerably influenced grain homogeneity, grain size and dielectric polarizability, as well as the variation in relative permittivity (εr) and quality factor (Q × f). When x = 0.04, Li2Zn0.96Co0.04Ti3O8 ceramic sintered at 900 °C had the most uniform grain size and exhibited optimum microwave dielectric properties, having a relative permittivity of 21.61, Q × f of 79,100 GHz and temperature coefficient of resonance frequency (τf) of − 12.3 ppm/°C. Thus, it showed potential for low temperature co-fired ceramic applications.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China under Grant Nos. U1809215, 51772047 and 61871069. Science and technology support program of Sichuan Province under Grant Nos. 2018GZ0320, 2016JQ0016 and 19ZDYF0529. And “111” Project under Grant No. T2018001.

References

  1. 1.
    L. Fang, D.J. Chu, H.F. Zhou, Microwave dielectric properties and low temperature sintering behavior of Li2CoTi3O8 ceramic. J. Alloys Compd. 509, 1880–1884 (2011)CrossRefGoogle Scholar
  2. 2.
    W. Lei, W. Lu, J. Zhu, X. Wang, Microwave dielectric properties of ZnAl2O4-TiO2 spinel-based composites. Mater. Lett. 61, 4066–4069 (2007)CrossRefGoogle Scholar
  3. 3.
    W. Lei, W. Lu, J. Zhu, F. Liang, D. Liu, Modification of ZnAl2O4-based low-permittivity microwave dielectric ceramics by adding 2MO-TiO2 (M = Co, Mg, and Mn). J. Am. Ceram. Soc. 91(6), 1958–1961 (2008)CrossRefGoogle Scholar
  4. 4.
    W. Wang, W. Bai, B. Shenn, J. Zhai, Microwave dielectric properties of low temperature sintered ZnWO4-TiO2 composite ceramics. Ceram. Int. 41, S435–S440 (2015)CrossRefGoogle Scholar
  5. 5.
    W. Wang, L. Li, S. Xiu, B. Shen, J. Zhai, Microwave dielectric properties of (Mg0.4Zn0.6)2SiO4-CaTiO3 ceramics sintered with Li2CO3-H3BO3 for LTCC technology. J. Alloys Compd. 639, 359–364 (2015)CrossRefGoogle Scholar
  6. 6.
    T. Sebastian, Dielectric Materials for Wireless Communications (Elseivier Publishers, Oxford, 2008)Google Scholar
  7. 7.
    V.S. Hernandez, L.M. Martinez, G.C. Mather, A.R. West, Stoichiometry structures and polymorphism of spinel-like phases, Li1.33xZn2−2xTi1+0.67xO4J. Mater. Chem. 6, 1533–1536 (1996)CrossRefGoogle Scholar
  8. 8.
    S. George, M.T. Sebastian, Synthesis and microwave dielectric properties of novel temperature stable high Q, Li2ATi3O8 (A = Mg, Zn) ceramics. J. Am. Ceram. Soc. 93, 2164–2166 (2010)CrossRefGoogle Scholar
  9. 9.
    P. Zhang, Y. Hua, W. Xia, L. Li, Effect of H3BO3 on the low temperature sintering and microwave dielectric properties of Li2ZnTi3O8 ceramics. J. Alloy Compd. 534, 9–12 (2012)CrossRefGoogle Scholar
  10. 10.
    C. Liu, B. Tsai, M. Weng, S. Huang, Influence of B2O3 additive on microwave di-electric properties of Li2ZnTi3O8 ceramics for LTCC applications. Int. J. Appl. Ceram. Technol. 101, 49–56 (2013)CrossRefGoogle Scholar
  11. 11.
    H.K. Li, W.Z. Lu, W. Lei, Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with ZnO-B2O3 frit. Mater. Lett. 71, 148–150 (2012)CrossRefGoogle Scholar
  12. 12.
    M. He, H.W. Zhang, Microwave properties of low-fired Li2ZnTi3O8 ceramics doped with CuO-Bi2O3-V2O5. J. Alloy Compd. 586, 627–632 (2014)CrossRefGoogle Scholar
  13. 13.
    Y.X. Li, J.S. Li, B. Tang, S.R. Zhang, H. Li, Z.J. Qin, H.T. Chen, H. Yang, H. Tu, Low temperature sintering and dielectric properties of Li2ZnTi3O8-TiO2 composite ceramics doped with CaO-B2O3-SiO2, glass. J. Mater. Sci. Mater. Electron. 25, 2780–2785 (2014)CrossRefGoogle Scholar
  14. 14.
    A. Sayyadi-Shahraki, E. Taheri-Nassaj, S.A. Hassanzadeh-Tabrizi, H. Barzegar-Bafrooei, Low temperature cofirable Li2Zn3Ti4O12 microwave dielectric ceramic with Li2O-ZnO-B2O3 glass additive. J. Mater. Sci. Mater. Electron. 25, 355–360 (2014)CrossRefGoogle Scholar
  15. 15.
    P. Zhang, Y.G. Zhao, High-Q microwave dielectric materials of Li2ZnTi3O8 ceramics with SnO2 additive. Ceram. Int. 42, 2882–2886 (2016)CrossRefGoogle Scholar
  16. 16.
    X. Lu, Z. Yong, B. Z, Z. Dong, P. Cheng, Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with Bi2O3. Ceram. Int. 39, 9829–9833 (2013)CrossRefGoogle Scholar
  17. 17.
    X.P. Lv, Y. Zheng, B. Zhou, Z.W. Dong, P. Cheng, Microwave dielectric properties of Li2ZnTi3O8 ceramics doped with ZnO-B2O3-SiO2 glass. Mater. Lett. 91, 217 (2013)CrossRefGoogle Scholar
  18. 18.
    Y.X. Li, Z.J. Qin, B. Tang, S.R. Zhang, G. Chang, H. Li, H.T. Chen, H. Yang, J.S. Li, Microwave dielectric properties of TiO2-added Li2ZnTi3O8 ceramics doped with Li2O-Al2O3-B2O3 glass. J. Electron. Mater. 44, 281 (2015)CrossRefGoogle Scholar
  19. 19.
    C.L. Huang, C.H. Su, C.M. Chang, High Q microwave dielectric ceramics in the Li2(Zn1−xAx)Ti3O8 (A = Mg, Co; x = 0.02–0.1) system. J. Am. Ceram. Soc. 94(12), 4146–4149 (2011)CrossRefGoogle Scholar
  20. 20.
    R.D. Shannon, Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  21. 21.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348 (1993)CrossRefGoogle Scholar
  22. 22.
    Z.L. Huan, Q.C. Sun, W.B. Ma, L.J. Wang, F. Xiao, T.K. Chen, Crystal structure and microwave dielectric properties of (Zn1−xCox)TiNb2O8 ceramics. J. Alloy Compd. 551, 630 (2013)CrossRefGoogle Scholar
  23. 23.
    L.X. Li, H. Sun, H.C. Cai, X.S. Lv, Microstructure and microwave dielectric characteristics of ZnZrNb2O8 and (Zn0.95M0.05)ZrNb2O8 (M = Ni, Mg, Co and Mn) ceramics. J. Alloy Compd. 639, 516 (2015)CrossRefGoogle Scholar
  24. 24.
    W.R. Yang, P.Z. Huang, C.L. Huang, Microwave dielectric properties of low-loss (Zn1−xCox)3Nb2O8 ceramics for LTCC applications. J. Alloy. Compd. 620, 18–23 (2015)CrossRefGoogle Scholar
  25. 25.
    X.P. Lu, Z.W. Dong, Y. Zheng, The relationships between structures and microwave dielectric properties of Li2Zn1−xCoxTi3O8 ceramics. J. Electron. Mater. (2017).  https://doi.org/10.1007/s11664-017-5725-0 Google Scholar
  26. 26.
    H.W. Chen, H. Su, H.W. Zhang, T.C. Zhou, B.W. Zhang, J.F. Zhang, X.L. Tang, Low-temperature sintering and microwave dielectric properties of (Zn1−xCox)2SiO4 ceramics. Ceram. Int. 40, 14655–14659 (2014)CrossRefGoogle Scholar
  27. 27.
    Z. Ding, H. Su, X. Tang, H. Zhang, Y.B. Liu, Low-temperature-sintering characteristic and microwave dielectric properties of (Zn0.7Mg0.3)TiO3 ceramics with LBSCA glass. Ceram. Int. 41, 10133–10136 (2015)CrossRefGoogle Scholar
  28. 28.
    H.W. Chen, H. Su, H.W. Zhang, Low temperature sintering and microwave dielectric properties of the LBSCA-doped (Zn0.95Co0.05)2SiO4 ceramics. J. Mater. Sci.: Mater. Electron. 26, 2820–2823 (2015)Google Scholar
  29. 29.
    H. Zuo, X. Tang, H. Zhang, Y. Lai, Y. Jing, H. Su, Low-dielectric-constant LiAlO2 ceramics combined with LBSCA glass for LTCC applications. Ceram. Int. 43, 8951–8955 (2017)CrossRefGoogle Scholar
  30. 30.
    S. Zhang, H. Su, H. Zhang, Y. Jing, X. Tang, Microwave dielectric properties of CaWO4–Li2TiO3 ceramics added with LBSCA glass for LTCC applications. Ceram. Int. 42, 15242–15246 (2016)CrossRefGoogle Scholar
  31. 31.
    T. Lei, J. Chen, Z. Xu, H. Su, Y. Li, X. Tang, Microwave dielectric properties of the low-temperature-fired Li2ZnTi3O8–Li2TiO3 ceramics for LTCC applications. J. Mater. Sci.: Mater. Electron. 29, 14705–14709 (2018)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Electronic Thin Films and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Jiangxi Guo Chuang Industrial Park Development Co., LtdGanzhouChina

Personalised recommendations