Acetone sensor based on Ni doped ZnO nanostructues: growth and sensing capability

  • Zahira El khalidiEmail author
  • Bouchaib Hartiti
  • Maryam Siadat
  • Elisabetta Comini
  • Hashitha M. M. Munasinghe Arachchige
  • Salah Fadili
  • Philippe Thevenin


This work presents the preparation of nanostructured zinc oxide (ZnO) thin films doped nickel (Ni) with the molar ratios [Ni]/[Zn] = 0.5; 1; 1.5; 2% M, using low cost spray pyrolysis method. Different characterization techniques were established, such as: X-ray diffraction that showed the hexagonal structure of the films confirmed by Raman spectroscopy. The grain size variations and the morphology according to doping levels were analyzed by scanning electron microscopy. Optical analysis was carried out, the films are transparent and the band gap energy varies opposing to Urbach energy. From experimental data, we observed that 2% Ni doped ZnO exhibited good characteristics and properties compared to pure ZnO and followed by the other samples. The gas testing confirmed the previous concepts, proving that 2% of nickel added to the basic solution enhanced; response/recovery time, response of the sensor and optimal working temperature. This sample demonstrated better selectivity to acetone detection with high response reaching 90, at 450 °C under 100 ppm.



Prof. Bouchaib HARTITI, Senior Associate at ICTP (The Abdus Salam International Centre for Theoretical Physics), is very grateful to ICTP for financial support.


  1. 1.
    S. Basu, A. Dutta, Modified heterojunction based on zinc oxide thin film for hydrogen gas-sensor application. Sens. Actuator B 22, 83–87 (1994)CrossRefGoogle Scholar
  2. 2.
    N. Zhang, K. Yu, Q. Li, Z.Q. Zhu, Q. Wan, Room-temperature high-sensitivity H2S gas sensor based on dendritic ZnO nanostructures with macroscale in appearance. J. Appl. Phys. 103, 104–305 (2008)Google Scholar
  3. 3.
    R. Ferro, J.A. Rodriguez, P. Bertrand, Development and characterization of a sprayed ZnO thin film-based NO2 sensor. Phys. Stat. Sol. (c) 10, 3754–3757 (2005)CrossRefGoogle Scholar
  4. 4.
    C.Y. Liu, C.F. Chen, J.P. Leu, The assessment for sensitivity of a NO2 gas sensor with ZnGa2O4/ZnO core-shell nanowires—a novel approach. J. Electrochem. Soc. 156, J16–J19 (2009)CrossRefGoogle Scholar
  5. 5.
    H.H. His, C.K. Tsai, M. Wang, Y.J. Tuan, H.P. Wang, Detection of ethanol vapour with Al-incorporated ZnO thin films. J. Exp. Nanosci. 6, 7–12 (2011)CrossRefGoogle Scholar
  6. 6.
    Y. He, Y.-Q. Liu, J.-N. Ma, D.-D. Han, J.-W. Mao, C.-H. Han, Y.-L. Zhang, Facile fabrication of high-performance humidity sensors by flash reduction of GO. ‎IEEE Sens. J. 17, 5285–5289 (2017)CrossRefGoogle Scholar
  7. 7.
    V.S. Vaishnav, S.G. Patel, J.N. Panchal, Development of ITO thin films sensor for detection of benzene. Sens. Actuator B 206, 381–388 (2015)CrossRefGoogle Scholar
  8. 8.
    O.D. Sparkman, Z. Penton, F. Kitson, Gas Chromatography and Mass Spectrometry: A Practical Guide (Academic Press, Elsevier, 2011)Google Scholar
  9. 9.
    D.D. Lee, D.-S. Lee, Environmental gas sensors. IEEE Sens. J. 1(3), 214–225 (2001)CrossRefGoogle Scholar
  10. 10.
    M. Ippommatsu. H. Ohnishi, H. Sasaki, T. Matsumoto, Study of the sensing mechanism of tin oxide flammable gas sensors using the Hall effect. J. Appl. Phys. 69, 8368 (1991)CrossRefGoogle Scholar
  11. 11.
    M. Proença, J. Borges, M.S. Rodrigues, R.P. Domingues, J.P. Dias, J. Trigueiro, N. Bundaleski, O. Teodoro, F. Vaz, Development of Au/CuO nanoplasmonic thin films for sensing applications. Surf. Coat. Technol. 343, 178–185 (2018)CrossRefGoogle Scholar
  12. 12.
    Z. El khalidi et al., Nickel oxide optimization using Taguchi design for hydrogen detection. Int. Urnal Hydrog. Energy (2018). Google Scholar
  13. 13.
    A. Sharma, M. Tomar, V. Gupta, SnO2 thin film sensor with enhanced response for NO2 gas at lower temperatures. Sens. Actuator B 156, 743–752 (2011)CrossRefGoogle Scholar
  14. 14.
    D. Zhang, J. Wu, P. Li, Y. Cao, Room-room-temperature SO2 gas-sensing properties based on a metal-doped MoS2 nanoflower: an experimental and density functional theory investigation. J. Mater. Chem. A 5, 20666–22067 (2017)CrossRefGoogle Scholar
  15. 15.
    D. Zhang, J. Liu, H. Chang, A. Liu, B. Xia, Characterization of a hybrid composite of SnO2 nanocrystal-decorated reduced graphene oxide for ppm-level ethanol gas sensing application. RSC Adv. 5, 18666–18672 (2015)CrossRefGoogle Scholar
  16. 16.
    D. Zhang, A. Liu, H. Chang, B. Xia, Room-temperature high-performance acetone gas sensor based on hydrothermal synthesized SnO2-reduced graphene oxide hybrid composite. RSC Adv. 5, 3016–3022 (2015)CrossRefGoogle Scholar
  17. 17.
    D. Zhang, N. Yin, B. Xia, Facile fabrication of ZnO nanocrystalline-modified graphene hybrid nanocomposite toward methane gas sensing application. J. Mater. Sci. Mater. Electron. 26(8), 5937–5937 (2015)CrossRefGoogle Scholar
  18. 18.
    C. Jie, G. Xin-shi, Single-layer heat mirror films and an improved method for evaluation of its optical and radiative properties in infrared. Sol. Energy Mater. Sol. Cells 55, 323–329 (1998)CrossRefGoogle Scholar
  19. 19.
    P. Jin, L. Miao, Formation and characterization of TiO2 thin films with application to a multifunctional heat mirror. Appl. Surf. Sci. 212–213, 775–781 (2003)CrossRefGoogle Scholar
  20. 20.
    J.Y. Lee, J.H. Lee, H. Seung Kim, C.-H. Lee, H.-S. Ahn, H.K. Cho, Y.Y. Kim, B.H. Kong, H.S. Lee, A study on the origin of emission of the annealed n-ZnO/p-GaN heterostructure LED. Thin Solid Films 517(17), 5157–5160 (2009)CrossRefGoogle Scholar
  21. 21.
    J. Nishino, T. Kawarada, S. Ohisho, H. Saitoh, K. Maruyama, K. Kamata, Conductive indium-doped zinc oxide films prepared by atmos-. pheric-pressure chemical vapour deposition. J. Mater. Sci. Lett. 1, 629 (1997)CrossRefGoogle Scholar
  22. 22.
    M. Ritala, T. Asikanen, M. Leskelä, J. Skarp, Coating on glass. Mater. Res. Soc. Symp. Proc. 426, 513 (1996)CrossRefGoogle Scholar
  23. 23.
    R. Wang, L.L.H. King, W.W. Sleight, Handbook of transparent conductors. J. Mater. Res. 11, 1659 (1996)CrossRefGoogle Scholar
  24. 24.
    V. Gupta, A. Mansingh, Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide film. J. Appl. Phys. 80, 1063 (1996)CrossRefGoogle Scholar
  25. 25.
    G.K. Mani, J.B.B. Rayappan, Selective detection of ammonia using spray pyrolysis deposited pure and nickel doped ZnO thin films. Appl. Surf. Sci. 311, 405–412 (2014)CrossRefGoogle Scholar
  26. 26.
    Y.S. Yoon, S.H. Jee, N. Kakati, J. Maiti, D.J. Kim, S.H. Lee, H.H. Yoon, Work function effect of ZnO thin film for acetone gas detection. Ceram. Int. 38S, S653–S656 (2012)CrossRefGoogle Scholar
  27. 27.
    J. Wang, J. Yang, N. Han, X. Zhou, S. Gong, J. Yang, P. Hu, Y. Chen, Highly sensitive and selective ethanol and acetone gas sensors based on modified ZnO nanomaterials. Mater. Des. 121, 69–76 (2017)CrossRefGoogle Scholar
  28. 28.
    M.D. Giulio, G. Micocci, A. Serra, A. Tepore, R. Rella, P. Siciliano, SnO2 thin films for gas sensor prepared by r.f. reactive sputtering. Sens. Actuator B 25, 465–468 (1995)CrossRefGoogle Scholar
  29. 29.
    D. Talantikite-Touati, H. Merzouk, H. Haddad, A. Tounsi, Effect of dopant concentration on structural and optical properties Mn doped ZnS films prepared by CBD method. Optik 136, 362–367 (2017)CrossRefGoogle Scholar
  30. 30.
    Y. Ammaih, A. Lfakir, B. Hartiti, A. Rifah, Optimization of parameters for deposition of ZnO films by sol gel using Taguchi method. Mol. Crys. 627(1), 176–182 (2016)CrossRefGoogle Scholar
  31. 31.
    S.V. Fokina, E.N. Borisov, V.V. Tomaev, AgI thin films prepared by laser ablation. Solid State Ion 297, 64–67 (2016)CrossRefGoogle Scholar
  32. 32.
    S. Mani Menaka, G. Umadevia, Effect of copper concentration on the physical properties of copper doped NiO thin films deposited by spray pyrolysis. Mater. Chem. Phys. 191, 181–187 (2017)CrossRefGoogle Scholar
  33. 33.
    Z. El khalidi, S. Fadili, B. Hartiti, A. Lfakir, P. Thevenin, M. Siadat, Behavior of NiO thin films sprayed at different annealing time. Opt. Quant. Electron. 48, 427 (2016)CrossRefGoogle Scholar
  34. 34.
    S. Bhuvana, H.B. Ramalingam, K. Vadivel, E.R. Kumar, A.I. Ayesh, Effect of Zn and Ni substitution on structural, morphological and magnetic properties of tin oxide nanoparticles. J. Magn. Magn. Mater. 419, 429–434 (2016)CrossRefGoogle Scholar
  35. 35.
    Pistorius, C.W.F.T. Pistorius, Some phase relations in the system Co0-SiO2-H30, NiO-SiO2-H20 and ZnO-SiO2-H.0 to high pressures and temperatures. Neues Jahrb Mineral. Monatsh 30–57 (1963)Google Scholar
  36. 36.
    S. Rani, P. Suri, P.K. Shishodia, R.M. Mehra, Synthesis of nanocrystalline ZnO powder via sol–gel route for dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells. 92, 1639–1645 (2008)CrossRefGoogle Scholar
  37. 37.
    G.K. Williamson, R.E. Smallman, Dislocation densities in some annealed and cold worked metals from measurements on the X ray debyescherrer spectrum. Philos. Mag. 1, 34–46 (2006)CrossRefGoogle Scholar
  38. 38.
    B. Mar, M. Mollar, D. Soro, R. Henrquez, R. Schrebler, H. Gmez, Synthesis of nickel oxide active carbon and electrochemical performance. Int. J. Electrochem. Sci. 8, 3510–3523 (2013)Google Scholar
  39. 39.
    S. Gao, M. Fivel, 3D discrete dislocation dynamics study of creep behavior in Ni-base single crystal superalloys by a combined dislocation climb and vacancy diffusion model. J. Mech. Phys. Solids 102, 209–223 (2017)CrossRefGoogle Scholar
  40. 40.
    Z. El khalidi, B. Hartiti, S. Fadili, A. Lfakir, P. Thevenin, Elaboration of ZnO: Ga thin films by spray pyrolysis for photovoltaic applications. Proceeding European PV Solar Energy Conference and Exhibition, 20–24 June, ICM, Munich, 1161–1165 (2016)Google Scholar
  41. 41.
    D.E. Milovzorova, A.M. Alic, T. Inokumac, Y. Kuratac, T. Suzukib, S. Hasegawa, Optical properties of silicon nanocrystallites in polycrystalline silicon films prepared at low temperature by plasma-enhanced chemical vapor deposition. Thin Solid Films 382, 47–55 (2001)CrossRefGoogle Scholar
  42. 42.
    Y. Yasaki, N. Sonoyama, Semiconductor sensitization of colloidal In2S3 on wide gap semiconductors. Electroanal. Chem. 469, 116–122 (1999)CrossRefGoogle Scholar
  43. 43.
    V.A. Vilkotskii, D.S. Domanevskii, R.D. Kakanakov, V.V. Krasovskii, V.D. Tkachev, Burstein-Moss effect and near-band-edge luminescence spectrum of highly doped indium arsenide. Phys. Status Solidi 91(1), 71–81 (1979)CrossRefGoogle Scholar
  44. 44.
    S. John, C. Soukoulis, M.H. Cohen, E.N. Economou, Theory of electron band tails and the Urbach optical absorption edge. Phys. Rev. Lett. 57, 1777–1780 (1986)CrossRefGoogle Scholar
  45. 45.
    R. Ferro, J.A. Rodrˇııguez, Some physical properties of F-doped CdO thin films deposited by spray pyrolysis. Thin Solid Films 347, 295–298 (1999)CrossRefGoogle Scholar
  46. 46.
    G. Sberveglieri, G. Faglia, C. Perego, P. Nelli, R.N. Marks, T. Virgili, C. Taliani, Zamboni, R 1996 Hydrogen and humidity sensing properties of C60, thin films Synth. Met. 77, 273–275 (2012)Google Scholar
  47. 47.
    V. Galstyan, E. Comini, C. Baratto, G. Sberveglieri, Nanostructured ZnO chemical gas sensors. Ceram Inter 41, 14239–14244 (2015)CrossRefGoogle Scholar
  48. 48.
    S. Kim, S. Park, S. Park, C. Lee, Acetone sensing of Au and Pd-decorated WO3 nanorod sensors. Sens. Actuators B 209, 180–185 (2015)CrossRefGoogle Scholar
  49. 49.
    M. Ge, T. Xuan, G. Yin, J. Lu, D. He, Controllable synthesis of hierarchical assembled porous ZnO microspheres for acetone gas sensor. Sens. Actuators B 220, 356–361 (2015)CrossRefGoogle Scholar
  50. 50.
    X. Zhou, J. Liu, C. Wang, P. Sun, X. Hu, X. Li, K. Shimanoe, N. Yamazoe, G. Lu, Highly sensitive acetone gas sensor based on porous ZnFe2O4 nanospheres. Sens. Actuators B 206, 577–583 (2015)CrossRefGoogle Scholar
  51. 51.
    Y. Lin, W. Wei, Y. Wang, J. Zhou, D. Sun, X. Zhang, S. Ruan, Highly stabilized and rapid sensing acetone sensor based on Au nanoparticle-decoratedflower-like ZnO microstructures. J. Alloy. Compd. 650, 37–44 (2015)CrossRefGoogle Scholar
  52. 52.
    I. Hayakawa, Y. Iwamoto, K. Kikuta, S. Hirano, Gas sensing properties of platinum dispersed-TiO2 thin film derived from precursor. Sens. Actuators B 62, 55–60 (2000)CrossRefGoogle Scholar
  53. 53.
    N. E.Wongrat, C. Chanlek, W. Ch, Thup, Acetone gas sensors based on ZnO nanostructures decorated with Pt and Nb. Ceram. Inter. 43, S557–S566 (2017)CrossRefGoogle Scholar
  54. 54.
    Z. El khalidi, E. Comini, B. Hartiti, A. Moumen, Effect of vanadium doping on ZnO sensing properties synthesized by spray pyrolysis. Mater. Des. 139, 56–64 (2018)CrossRefGoogle Scholar
  55. 55.
    N. Yamazoe, G. Sakai, K. Shimanoe, Oxide semiconductor gas sensors. Catal. Surv. Asia 7, 63–75 (2003)CrossRefGoogle Scholar
  56. 56.
    D. Sett, D. Basak, Highly enhanced H2 gas sensing characteristics of Co:ZnO nanorods and its mechanism. Sens. Actuator B 243, 475–483 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Zahira El khalidi
    • 1
    Email author
  • Bouchaib Hartiti
    • 1
    • 2
  • Maryam Siadat
    • 3
  • Elisabetta Comini
    • 4
  • Hashitha M. M. Munasinghe Arachchige
    • 4
  • Salah Fadili
    • 1
  • Philippe Thevenin
    • 3
  1. 1.MAC & PM Laboratory, FST MohammediaHassan II Casablanca UniversityCasablancaMorocco
  2. 2.ICTP-UNESCO-IAEATriesteItaly
  3. 3.Dipartimento di Ingegneria dell’InformazioneUniversita digli studi di BresciaBresciaItaly
  4. 4.LMOPS LaboratoryUniversity of Lorraine MetzMetzFrance

Personalised recommendations