Ultra-low temperature co-fired CaV2O6-glass composite ceramic substrate for microelectronics

  • Arun Sasidharanpillai
  • Sebastian Mailadil Thomas
  • Younki Lee
  • Hyo Tae KimEmail author


Bivalent calcium metavanadate (CaV2O6) ceramic-glass composite substrates were fabricated using non-aqueous environmental friendly tape casting formulation. 3 wt% of commercial glass was added to the calcined powder of CaV2O6 to achieve a sintering temperature of 650 °C which enables ultra-low temperature co-firing with aluminum electrode. An environmentally benign binder/solvent (Polypropylene carbonate/dimethyl carbonate) system was adopted to prepare the well dispersed slurry for tape casting. The crystal structure and co-fireability of the sintered substrate with Al was verified by X-ray diffraction technique. Thermal, dielectric and morphological analysis of the multilayer were analyzed. The room temperature thermal conductivity of CaV2O6-glass composite sintered at 650 °C is about 2.8 W/m K. Sintered ceramics shows a relatively high linear coefficient of thermal expansion (CTE) of 11.46 ppm/°C, which is favorable for co-firing with high CTE metallic materials. Microwave dielectric properties of CaV2O6-glass composite multilayer fired at 650 °C are εr = 10.6 and tanδ = 3.19 × 10−4 at 15 GHz.



The authors are grateful to the financial support from the brain pool program by KOFST (Grant No. 171S-2-1-1853, 2017) and ceramic strategic technology development program by KICET (Grant No. KPP17004-2, 2018).


  1. 1.
    Y. Li, Y. Xie, Ru Xie, D. Chen, H. Zhang, J. Alloys Compd. 737, 144–151 (2018)CrossRefGoogle Scholar
  2. 2.
    M.T. Sebastian, Dielectric Materials for Wireless Communication (Elsevier, Oxford, 2008), pp. 445–465CrossRefGoogle Scholar
  3. 3.
    P. Abhilash, D. Thomas, K.P. Surendran, M.T. Sebastian, J. Am. Ceram. Soc. 96, 1533–1537 (2013)CrossRefGoogle Scholar
  4. 4.
    L.X. Pang, D. Zhou, W.B. Li, Z.X. Yue, J. Eur. Ceram. Soc. 37, 3073–3077 (2017)CrossRefGoogle Scholar
  5. 5.
    G. Subodh, R. Ratheesh, M.V. Jacob, M.T. Sebastian, J. Mater. Res. 23, 1551–1556 (2008)CrossRefGoogle Scholar
  6. 6.
    Z. Di, P. Li-Xia, Q. Ze-Ming, J. Biao-Bing, Y. Xi, Sci. Rep. 4, 5980 (2014)CrossRefGoogle Scholar
  7. 7.
    D. Zhou, C.A. Randall, H. Wang, L.-X. Pang, X. Yao, J. Am. Ceram. Soc. 93, 1096–1100 (2010)CrossRefGoogle Scholar
  8. 8.
    D. Zhou, D. Guo, W.-B. Li, L.-X. Pang, X. Yao, D.-W. Wang, I.M. Reaney, J. Mater. Chem. C 4, 5357–5362 (2016)CrossRefGoogle Scholar
  9. 9.
    E.K. Suresh, A.N. Unnimaya, A. Surjith, R. Ratheesh, Ceram. Int. 39, 3635–3639 (2013)CrossRefGoogle Scholar
  10. 10.
    H. Xiang, C. Li, Y. Tang, L. Fang, J. Eur. Ceram. Soc. 37, 3959–3963 (2017)CrossRefGoogle Scholar
  11. 11.
    E.K. Suresh, K. Prasad, N.S. Arun, R. Ratheesh, J. Electron. Mater. 45, 2996–3002 (2016)CrossRefGoogle Scholar
  12. 12.
    U.A. Neelakantan, S.E. Kalathil, R. Ratheesh, Eur. J. Inorg. Chem. 2, 305–310 (2015)CrossRefGoogle Scholar
  13. 13.
    G.-G. Yao, C.-J. Pei, J.G. Xu, P. Liu, J.-P. Zhou, H.-W. Zhang, J. Mater. Sci. Mater. Electron. 26, 7719–7722 (2015)CrossRefGoogle Scholar
  14. 14.
    S.E. Kalathil, U.A. Neelakantan, R. Ratheesh, J. Am. Ceram. Soc. 97, 1530–1533 (2014)CrossRefGoogle Scholar
  15. 15.
    A.C. Ali, E. Suvaci, H. Mandal, J. Eur. Ceram. Soc. 31, 167–173 (2011)CrossRefGoogle Scholar
  16. 16.
    M. Michálek, G. Blugan, T. Graule, J. Kuebler, Powder Technol. 274, 276–283 (2015)CrossRefGoogle Scholar
  17. 17.
    A. Kristoffersson, E. Carlström, J. Eur. Ceram. Soc. 17, 289–297 (1997)CrossRefGoogle Scholar
  18. 18.
    S. Arun, C.H. Kim, C.H. Lee, M.T. Sebastian, H.T. Kim, ACS Sustain. Chem. Eng. 6, 6849–6855 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Ma, Y. Yang, D. Liao, P. Lyu, J. Zhang, J. Liang, L. Zhang, Appl. Organomet. Chem. 33, e4708 (2018)CrossRefGoogle Scholar
  20. 20.
    J. Honkamo, H. Jantunen, G. Subodh, M.T. Sebastian, P. Mohanan, Int. J. Appl. Ceram. Technol. 6, 531–536 (2009)CrossRefGoogle Scholar
  21. 21.
    H. Yu, K. Ju, J. Liu, Y. Li, J. Mater. Sci. Mater. Electron. 25, 5114–5118 (2014)CrossRefGoogle Scholar
  22. 22.
    T.I. Krasnenko, O.A. Zabara, L.V. Zolotukhina, A.A. Fotiev, J. Phys. Chem. Solids 60, 645–650 (1999)CrossRefGoogle Scholar
  23. 23.
    E.J. Baran, C.I. Cabello, A.G. Nordt, J. Raman Spectrosc. 18, 405–407 (1987)CrossRefGoogle Scholar
  24. 24.
    G. Perez, B. Frit, J.C. Bouloux, J. Galy, C. R. Acad. Sci., Ser. C. 270, 952–953 (1970)Google Scholar
  25. 25.
    J.C. Bouloux, G. Perez, J. Galy, Bull. Soc. Fr. Mineral. Crystallogr. 95, 130–133 (1972)Google Scholar
  26. 26.
    M. Schmidt, H. Münstedt, M. Svec, A. Roosen, T. Betz, F. Koppe, J. Am. Ceram. Soc. 85, 314–320 (2004)CrossRefGoogle Scholar
  27. 27.
    Y.T. Chou, Y.T. Ko, M.F. Yan, J. Am. Ceram. Soc. 70, C-280–C-282 (1987)CrossRefGoogle Scholar
  28. 28.
    A.I.Y. Tok, F.Y.C. Boey, Y.C. Lam, Mater. Sci. Eng. A. 280, 282–288 (2000)CrossRefGoogle Scholar
  29. 29.
    A. Feng, G. Wu, Y. Wang, C. Pan, J. Nanosci. Nanotechnol. 17, 3859–3863 (2017)CrossRefGoogle Scholar
  30. 30.
    M. Cai, J. Zhu, C. Yang, R. Gao, C. Shi, J. Zhao, Polymers 11, 185 (2019)CrossRefGoogle Scholar
  31. 31.
    J. Li, J. Ma, S. Chen, J. He, Y. Huang, Food Hydrocoll. 82, 363–369 (2018)CrossRefGoogle Scholar
  32. 32.
    H. Yan, W.R. Cannon, D.J. Shanefield, Ceram. Int. 24, 433–439 (1998)CrossRefGoogle Scholar
  33. 33.
    H. Yan, W.R. Cannon, D.J. Shanefield, J. Am. Ceram. Soc. 76, 166–172 (1993)CrossRefGoogle Scholar
  34. 34.
    G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Appl. Surf. Sci. 464, 472–478 (2018)CrossRefGoogle Scholar
  35. 35.
    M. Ma, Y. Yang, W. Li, R. Feng, Z. Li, P. Lyu, Y. Ma, J. Mater. Sci. 54, 323–334 (2019)CrossRefGoogle Scholar
  36. 36.
    S. Masia, P.D. Calvert, W.E. Rhine, H.K. Bowen, J. Mater. Sci. 24, 1907–1912 (1989)CrossRefGoogle Scholar
  37. 37.
    S.M. Shapee, R. Alias, I. Azmi, Z. Ambak, Z.M. Yusoff, M.R. Saad, Key Eng. Mater. 421–422, 485–489 (2009)CrossRefGoogle Scholar
  38. 38.
    S.E. Fritz, T.W. Kelley, C.D. Frisbie, J. Phys. Chem. B. 109, 10574–10577 (2005)CrossRefGoogle Scholar
  39. 39.
    D. Monika, N. Suri, P.K. Khanna, Int. J. Res. Eng. Technol. 2, 441–444 (2013)Google Scholar
  40. 40.
    Y. Gong, W. Deng, W. Zhang, C. Yatongchai, Y. Zou, R.C. Buchanan, Ceram. Int. 41, 671–680 (2015)CrossRefGoogle Scholar
  41. 41.
    G. Wu, H. Zhang, X. Luo, L. Yang, H. Lv, J. Colloid Interface Sci. 536, 548–555 (2019)CrossRefGoogle Scholar
  42. 42.
    T. Wu, Y. Pu, T. Zong, P. Gao, J. Alloys Compd. 584, 461–465 (2014)CrossRefGoogle Scholar
  43. 43.
    R.K. Bhuyan, T.S. Kumar, D. Pamu, Ferroelectrics 516, 173–184 (2017)CrossRefGoogle Scholar
  44. 44.
    T. Welker, S. Günschmann, N. Gutzeit, J. Müller, J. Ceram. Sci. Technol. 6, 301–304 (2015)Google Scholar
  45. 45.
    M.T. Sebastian, H. Jantunen, Int. Mater. Rev. 53, 57–90 (2008)CrossRefGoogle Scholar
  46. 46.
    S. Arun, M.T. Sebastian, K.P. Surendran, Ceram. Int. 43, 5509–5516 (2017)CrossRefGoogle Scholar
  47. 47.
    M. Ma, Z. Liu, Y. Li, Y. Zeng, D. Yao, Ceram. Int. 39, 4683–4687 (2013)CrossRefGoogle Scholar
  48. 48.
    S. Wang, D. Zhang, X. Ouyang, Y. Wang, G. Liu, J. Alloys Compd. 667, 23–28 (2016)CrossRefGoogle Scholar
  49. 49.
    J. Kita, A. Engelbrecht, F. Schubert, A. Groß, F. Rettig, R. Moos, Sens. Actuators B 213, 541–546 (2015)CrossRefGoogle Scholar
  50. 50.
    R.C. Keller, R.O. Pohl, Phys. Rev. B 4, 2029–2041 (1971)CrossRefGoogle Scholar
  51. 51.
    R. Zhang, T.R. Wei, B.P. Zhang, K. Wang, D. Ichigozaki, J.F. Li, J. Alloys Compd. 646, 298–302 (2015)CrossRefGoogle Scholar
  52. 52.
    W.D. Kingery, J. Am. Ceram. Soc. 38, 251–255 (1955)CrossRefGoogle Scholar
  53. 53.
    S.B. Roshni, M.T. Sebastian, K.P. Surendran, Sci. Rep. 7, 40839 (2017)CrossRefGoogle Scholar
  54. 54.
    M. Eberstein, C. Glitzky, M. Gemeinert, T. Rabe, W.A. Schiller, C. Modes, Int. J. Appl. Ceram. Technol. 6, 1–8 (2009)CrossRefGoogle Scholar
  55. 55.
    L. Chen, P. Wu, P. Song, J. Feng, Ceram. Int. 44, 16273–16281 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Korea Institute of Ceramic Engineering and TechnologyJinjuRepublic of Korea
  2. 2.Department of Materials Engineering and Convergence TechnologyRIGET, Gyeongsang National UniversityJinjuRepublic of Korea

Personalised recommendations