Advertisement

Structural and ferroelectric properties of orthogonal crystalline in Fe-doped HoMnO3 synthesized at normal pressure

  • Yizhang Wu
  • Qiyun Xie
  • Meng Li
  • Xiaofan Sun
  • Hong-Ling CaiEmail author
  • X. S. WuEmail author
Article
  • 20 Downloads

Abstract

A typical multiferroic manganese oxide of HoMnO3 was partially substituted by Fe at Mn site. Orthogonal crystalline phase of HoMn1−xFexO3 was synthesized at normal pressure. This finding has changed the conventional method of synthesizing orthogonal crystalline phase of rare-earth manganese oxides under high-temperature and high-pressure. The doping of iron ions suppresses the formation of hexagonal phase as revealed from X-ray diffraction, Morphology analysis, Raman spectrum and X-ray photoelectron spectroscopy. The doping of Fe3+ into HoMnO3 causes changes in the space group of the sample and ferroelectricity at room temperature. There are two phases with a ferroelectric space group of \({P6}_{3}cm\) and a paraelectric one of Pnma coexisted in Ho\({\text{Mn}}_{1-x}{Fe}_{x}{O}_{3}\) polycrystalline with x < 0.15 as revealed by the Rietveld refinement. With increasing of doping concentration, the proportion of \({P6}_{3}cm\) gradually decreases. When x > 0.15, the phase with \({P6}_{3}cm\) space group disappears, and samples have only one crystalline phase Pnma. We found that the sample remained ferroelectricity at room temperature in the process of changing the doping concentration. The ferroelectric property disappears until it completely changed to the orthogonal phase. The synthesis of orthogonal HoMnO3 at normal pressure has not been previously reported and potentially open up abroad research and application prospects.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundations of China (Grant Nos. 11574138, 11874200, 21427801), the Top-Notch Young Talents Program of China, the National Key R&D Program of China (Grant No. 2016YFA0201104), and Dengfeng Project B of Nanjing University.

Supplementary material

10854_2019_1078_MOESM1_ESM.docx (1.3 mb)
Supplementary material 1 (DOCX 1290 KB)

References

  1. 1.
    K. Engelbrecht, D. Eriksen, C.R.H. Bahl et al., Experimental results for a novel rotary active magnetic regenerator. Int. J. Refrig 35(6), 1498–1505 (2012).  https://doi.org/10.1016/j.ijrefrig.2012.05.003 CrossRefGoogle Scholar
  2. 2.
    K.F. Wang, J.M. Liu, Z.F. Ren, Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58(4), 321–448 (2009).  https://doi.org/10.1080/00018730902920554 CrossRefGoogle Scholar
  3. 3.
    S. Dong, J.M. Liu. Recent, progress of multiferroic, perovskite manganites. Mod. Phys. Lett. B 26(09), 1230004 (2012).  https://doi.org/10.1142/S0217984912300049 CrossRefGoogle Scholar
  4. 4.
    Y.W. Windsor, S.W. Huang, Y. Hu et al., Multiferroic properties of o-LuMnO3 controlled by b-axis strain. Phys. Rev. Lett. 113(16), 167202 (2014).  https://doi.org/10.1103/PhysRevLett.113.167202 CrossRefGoogle Scholar
  5. 5.
    D. Meier, H. Ryll, K. Kiefer et al., Mutual induction of magnetic 3d and 4f order in multiferroic hexagonal ErMnO3. Phys. Rev. B 86(18), 5890–5898 (2012).  https://doi.org/10.1103/PhysRevB.86.184415 CrossRefGoogle Scholar
  6. 6.
    W.C. Koehler, H.L. Yakel, E.O. Wollan et al., A note on the magnetic structures of rare earth manganese oxides. Phys. Lett. 9(2), 93–95 (1964).  https://doi.org/10.1016/0031-9163(64)90089-7 CrossRefGoogle Scholar
  7. 7.
    D.G. Tomuta, S. Ramakrishnan, G.J. Nieuwenhuys et al., The magnetic susceptibility, specific heat and dielectric constant of hexagonal YMnO3, LuMnO3 and ScMnO3. J. Phys. Condens. Matter 13(20), 4543 (2001).  https://doi.org/10.1088/0953-8984/13/20/315 CrossRefGoogle Scholar
  8. 8.
    A. Oleaga, A. Salazar, D. Prabhakaran et al., Critical behavior of the paramagnetic to antiferromagnetic transition in orthorhombic and hexagonal phases of RMnO3 (R = Sm, Tb, Dy, Ho, Er, Tm, Yb, Lu, Y). Phys. Rev. B 85(18), 110–113 (2012).  https://doi.org/10.1103/PhysRevB.85.184425 CrossRefGoogle Scholar
  9. 9.
    K. Omri, A. Alyamani, L.E. Mir, Photoluminescence and cathodoluminescence of Mn doped zinc silicate nanophosphors for green and yellow field emissions displays. Appl. Phys. A 124(2), 215 (2018).  https://doi.org/10.1007/s00339-018-1657-7 CrossRefGoogle Scholar
  10. 10.
    N. Alonizan, S. Rabaoui, K. Omri et al., Microstructure and luminescence properties of ZnO:Mn nano-particles and ZnO:Mn/TiO2 nano-composite synthesized by a two-step chemical method. Appl. Phys. (2018).  https://doi.org/10.1007/s00339-018-2127-y Google Scholar
  11. 11.
    K. Omri, N. Alonizan, Effects of ZnO/Mn concentration on the micro-structure and optical properties of ZnO/Mn–TiO2 nano-composite for applications in photo-catalysis. J. Inorg. Organomet. Polym Mater. (2018).  https://doi.org/10.1007/s10904-018-0979-4 Google Scholar
  12. 12.
    Y. Zhang, F. Liu, T. Zheng et al., Synthesis of perovskite-type manganites Yb1−xDyxMnO3 (0.1 ≤ x ≤ 0.5) via solid-state reaction and high-pressure flux methods followed by structural characterization and magnetic property studies. New J. Chem. 39(4), 2596–2601 (2015).  https://doi.org/10.1039/C4NJ01876A CrossRefGoogle Scholar
  13. 13.
    M. Tachibana, T. Shimoyama, H. Kawaji et al., Jahn-Teller distortion and magnetic transitions in perovskite RMnO3, (R = Ho, Er, Tm, Yb, and Lu). Phys. Rev. B (2007).  https://doi.org/10.1103/PhysRevB.75.144425 Google Scholar
  14. 14.
    I.V. Solovyev, S.A. Nikolaev, Spin dependence of ferroelectric polarization in the double exchange model for manganites. Phys. Rev. B 90(18), 184425 (2014).  https://doi.org/10.1103/PhysRevB.90.184425 CrossRefGoogle Scholar
  15. 15.
    L. Liu, R. Guo, S. Wang et al., Synthesis and characterization of PrBa0.5Sr0.5Co2–x NixO5 + δ, (x = 0.1, 0.2 and 0.3) cathodes for intermediate temperature SOFCs. Ceram. Int. 40(10), 16393–16398 (2014).  https://doi.org/10.1016/j.ceramint.2014.07.144 CrossRefGoogle Scholar
  16. 16.
    P. Gao, Z. Chen, T.A. Tyson et al., High-pressure structural stability of multiferroic hexagonal RMnO3, (R = Y, Ho, Lu). Phys. Rev. B 83(22), 1417–1425 (2011).  https://doi.org/10.1103/PhysRevB.83.224113 CrossRefGoogle Scholar
  17. 17.
    A. Ahlawat, S. Satapathy, D.M. Phase et al., Effect of Fe doping on the magnetic ordering temperature of ErMnO3. Appl. Phys. Lett. 106(25), 13–255 (2015).  https://doi.org/10.1063/1.4923166 CrossRefGoogle Scholar
  18. 18.
    J.W. Kim, L. Schultz, K. Dörr et al., Growth and multiferroic properties of hexagonal HoMnO3 films. Appl. Phys. Lett. 90(1), 759 (2007).  https://doi.org/10.1063/1.2425027 Google Scholar
  19. 19.
    S.B. Kim, S.J. Kim,et al., Mössbauer studies of Fe-doped HoMnO3. Appl. Phys. 99, 08Q313 (2006).  https://doi.org/10.1063/1.2171054 CrossRefGoogle Scholar
  20. 20.
    P. Murugavel, J.H. Lee, D. Lee et al., Physical properties of multiferroic hexagonal HoMnO3 thin films. Appl. Phys. Lett. 90(14), 1958 (2007).  https://doi.org/10.1063/1.2718512 CrossRefGoogle Scholar
  21. 21.
    C.J. Bartel, C. Sutton, B.R. Goldsmith et al., New tolerance factor to predict the stability of perovskite oxides and halides. Sci. Adv 5(2), eeav0693 (2018)CrossRefGoogle Scholar
  22. 22.
    J.M.D. Coey, M. Viret, S. von Molnár, Mixed-valence manganites. Adv. Phys. 58(6), 571–697 (2009).  https://doi.org/10.1080/00018730903363184 CrossRefGoogle Scholar
  23. 23.
    I.H. Campbell, P.M. Fauchet, The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors. Solid State Commun. 58(10), 739–741 (1986).  https://doi.org/10.1016/0038-1098(86)90513-2 CrossRefGoogle Scholar
  24. 24.
    H.C. Gupta, M. Kumar Singh, L.M. Tiwari, Lattice dynamic investigation of Raman and infrared wavenumbers at the zone center of orthorhombic RFeO3 (R = Tb, Dy, Ho, Er, Tm) perovskites. J. Raman Spectrosc. 33(1), 67–70 (2002).  https://doi.org/10.1002/jrs.805 CrossRefGoogle Scholar
  25. 25.
    J.F. Moulder, Handbook of X-ray photoelectron spectroscopy. Phys. Electron., 230–232 (1995)Google Scholar
  26. 26.
    D. Briggs, M.P. Seah (eds.), Practical Surface Analysis by Auger and X-ray Photoelectron Spectroscopy (Wiley, New York, 1983)Google Scholar
  27. 27.
    S. Biniak et al., The characterization of activated carbons with oxygen and nitrogen surface groups. Carbon 35(12), 1799–1810 (1997).  https://doi.org/10.1016/S0008-6223(97)00096-1 CrossRefGoogle Scholar
  28. 28.
    R.K. Thakur, R. Thakur, A. Bharathi et al., Thermal and magnetic response of divalent Sr doped hexagonal YMnO3. Mod. Phys. Lett. B 26(30), 1250201 (2012).  https://doi.org/10.1142/S0217984912502016 CrossRefGoogle Scholar
  29. 29.
    E. Beyreuther, S. Grafström, L.M Eng et al., XPS investigation of Mn valence in lanthanum manganite thin films under variation of oxygen content. J. Virol. 81(18), 10123 (2006).  https://doi.org/10.1103/PhysRevB.73.155425 Google Scholar
  30. 30.
    F. Wan et al., Crystalline structure and dielectric properties of multiferroic Cr-doped YMnO3. J. Mater. Sci. Mater. Electron. 27(3), 3082–3087 (2016).  https://doi.org/10.1007/s10854-015-4133-6 CrossRefGoogle Scholar
  31. 31.
    H.W. Nesbitt, D. Banerjee, Interpretation of XPS Mn(2p) spectra of Mn oxyhydroxides and constraints on the mechanism of MnO2 precipitation. Am. Miner. 83(3–4), 305–315 (1998)CrossRefGoogle Scholar
  32. 32.
    A. Hariki et al., Orbital- and spin-order sensitive nonlocal screening in Mn 2p X-ray photoemission of La1 – xSrxMnO3. EPL 114(2), 27003 (2016).  https://doi.org/10.1209/0295-5075/114/27003 CrossRefGoogle Scholar
  33. 33.
    A.Z. Simoes, A.H.M. Gonzalez, L.S. Cavalcante et al., Ferroelectric characteristics of BiFeO3, thin films prepared via a simple chemical solution deposition. J. Appl. Phys. 101(7), R132 (2007).  https://doi.org/10.1063/1.2715513 CrossRefGoogle Scholar
  34. 34.
    M.G. Ranieri, R.A.C. Amoresi, M.A. Ramirez et al., Magnetoelectricity at room temperature in the LaFeO3 /BiFeO3, heterostructures. J. Mater. Sci. Mater. Electron. 27(9), 1–10 (2016).  https://doi.org/10.1007/s10854-016-4972-9 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Collaborative Innovation Center of Advanced Microstructures, Lab of Solid State Microstructures, School of PhysicsNanjing UniversityNanjingPeople’s Republic of China
  2. 2.Key Lab Radio Frequency & Micronano Elect JiangsuNanjingPeople’s Republic of China

Personalised recommendations