Ultraviolet detection properties of electrodeposited n-SnO2 modified p-Si nanowires hetero-junction photodiode

  • Saravanan Yuvaraja
  • Vivek Kumar
  • Hrishikesh Dhasmana
  • Amit KumarEmail author
  • Abhishek Verma
  • V. K. Jain


Highly dense, vertically aligned silicon nanowires (SiNWs), having diameters in the range of 40–100 nm and length upto 5 µm, are grown by metal assisted chemical etching technique on p-type polycrystalline silicon (pc-Si) substrate. The hetero-junction photodiodes, for ultraviolet sensing application, are fabricated by depositing tin oxide (n-SnO2) onto pc-Si and SiNWs on pc-Si surface, using simple and low cost electrochemical deposition technique. The prepared SiNWs and n-SnO2 decorated SiNWs are examined by scanning electron microscopy and elemental dispersive analysis by X-ray. Three photodiodes with device architectures Al/Ti/SiNWs/pc-Si/Ti/Al, Al/Ti/n-SnO2/pc-Si/Ti/Al and Al/Ti/n-SnO2/SiNWs/pc-Si/Ti/Al are fabricated and their UV sensing behavior is studied by recording their V–I characteristics under dark and UV-radiation. The recorded V–I curves of the fabricated devices show diode like behavior and their rectification ratio, turn on voltage, effective barrier height and sensitivity are calculated and compared. Under UV exposure, the V–I studies under forward and reverse biasing for the device Al/Ti/n-SnO2/SiNWs/pc-Si/Ti/Al shows significantly higher rectification ratio, sensitivity, responsivity and detectivity around 172.3 at ± 9 V, 64, 0.3456 A/W at 5 V and 8.02869 × 1012 Jones respectively. Further, the photo-resistive measurements of the device also show its excellent reproducible nature. This better UV sensing behavior is also supported with proposed UV sensing mechanism under biasing conditions.



The authors are thankful to Dr. Ashok K. Chauhan, Founder President, Amity University, Noida for his continuous encouragement. The authors would also like to thank Dr. D. N. Singh from IndoSolar Pvt. Ltd., India for providing the silicon wafers to carry out the experiments.


  1. 1.
    H. Cui, S. Li, S. Deng, H. Chen, C. Wang, ACS Sens. 2, 386 (2017)CrossRefGoogle Scholar
  2. 2.
    H. Jian, M. Dayan, X. Kewei, Rare Met. Mater. Eng. 44, 2692 (2015)CrossRefGoogle Scholar
  3. 3.
    A. Cao, J.R. Sudhölter, L.C.P. M. de Smet. Sensors 14, 245 (2014)CrossRefGoogle Scholar
  4. 4.
    F. Patolsky, G. Zheng, C.M. Lieber, Nanomedicine 1, 51 (2006)CrossRefGoogle Scholar
  5. 5.
    Y. Paska, T. Stelzner, O. Assad, U. Tisch, S. Christiansen, H. Haick, ACS Nano 6, 335 (2012)CrossRefGoogle Scholar
  6. 6.
    Y. Bi, X.S. Hu, M. Niemier, J.S. Yuan, Y. Jin, in 2014 IEEE 23rd Asian Test Symposium vol. 14, p. 342 (2014)Google Scholar
  7. 7.
    Council on Scientific Affairs. JAMA 262, 380 (1989)CrossRefGoogle Scholar
  8. 8.
    A. Sciuto, M.C. Mazzillo, S.D. Franco, IEEE Photonics J. 9, 6801110 (2017)CrossRefGoogle Scholar
  9. 9.
    M. Caria, L. Barberini, A. Rusani, A. Sesseligo, Appl. Phys. Lett. 81, 1506 (2002)CrossRefGoogle Scholar
  10. 10.
    C. Pernot, A. Hirano, M. Iwaya, H. Amano, T. Detchprohm, I. Akasaki, Jpn. J. Appl. Phys. 39, 387 (2000)CrossRefGoogle Scholar
  11. 11.
    X. Dai, S. Zhang, Z. Wang, G. Adamo, H. Liu, Y. Huang, C. Couteau, C. Soci, Nano Lett. 14, 2688 (2014)CrossRefGoogle Scholar
  12. 12.
    A. Aldalbahi, E. Li, M. Rivera, R. Velazquez, T. Altalhi, X. Peng, P.X. Feng, Sci. Rep. 6, 23457 (2016)CrossRefGoogle Scholar
  13. 13.
    A.R. Schaefer, Appl. Opt. 16, 1539 (1977)CrossRefGoogle Scholar
  14. 14.
    T.E. Hansen, Phys. Scr. 18, 471 (1978)CrossRefGoogle Scholar
  15. 15.
    R. Korde, J. Geist, Solid State Electron. 30, 89 (1987)CrossRefGoogle Scholar
  16. 16.
    R.S. Popovic, K. Solt, U. Falk, Z. Stoessel, Sens. Actuators A 22, 553 (1990)CrossRefGoogle Scholar
  17. 17.
    O.M. Nayfeh, S. Rao, A. Smith, J. Therrien, M.H. Nayfeh, IEEE Photon. Technol. Lett. 16, 1927 (2004)CrossRefGoogle Scholar
  18. 18.
    P. Namdari, H. Daraee, A. Eatemadi, Nanoscale Res. Lett. 11, 406 (2016)CrossRefGoogle Scholar
  19. 19.
    K.Q. Peng, S.T. Lee, Adv. Mater. 23, 198 (2011)CrossRefGoogle Scholar
  20. 20.
    K. Rasool, M.A. Rafiq, M. Ahmad, Z. Imran, M.M. Hasan, Appl. Phys. Lett. 101, 253104 (2012)CrossRefGoogle Scholar
  21. 21.
    Y. Qi, Z. Wang, M. Zhang, X. Wang, A. Ji, F. Yang, AIP Adv. 4, 031307 (2014)CrossRefGoogle Scholar
  22. 22.
    T.W. Ho, F.C.N. Hong, J. Nanomater. 2012, 274618 (2012)CrossRefGoogle Scholar
  23. 23.
    F. Demami, L. Pichon, R. Rogel, A.C. Salaün, IOP Conf. Ser. Mater. Sci. Eng. 6, 012014 (2009)CrossRefGoogle Scholar
  24. 24.
    N. Fukata, T. Oshima, T. Tsurui, S. Ito, K. Murakami, Sci. Technol. Adv. Mater. 6, 628 (2005)CrossRefGoogle Scholar
  25. 25.
    M.K. Hossain, B. Salhi, A.W. Mukhaimer, F.A. Al-Sulaiman, Appl. Nanosci. 6, 1031 (2016)CrossRefGoogle Scholar
  26. 26.
    T. Zhai, X. Fang, M. Liao, X. Xu, H. Zeng, B. Yoshio, D. Golberg, Sensors 9, 6504 (2009)CrossRefGoogle Scholar
  27. 27.
    D. Kim, G. Shin, J. Yoon, D. Jang, S.J. Lee, G. Zi, J.S. Ha, Nanotechnology 24, 315502 (2013)CrossRefGoogle Scholar
  28. 28.
    Z. Yuan, D. Li, M. Wang, P. Chen, D. Gong, P. Cheng, D. Yang, Appl. Phys. Lett. 92, 121908 (2008)CrossRefGoogle Scholar
  29. 29.
    K.W. Min, Y.K. Kim, G. Shin, S. Jang, M. Han, J. Huh, G.T. Kim, J.S. Ha, Adv. Funct. Mater. 21, 119 (2011)CrossRefGoogle Scholar
  30. 30.
    X. Chen, J. Liang, Z. Zhou, B. Li, Mater. Res. Bull. 45, 2006 (2010)CrossRefGoogle Scholar
  31. 31.
    G. Rawat, D. Somvanshi, Y. Kumar, H. Kumar, C. Kumar, S. Jit, IEEE Trans. Nanotechnol. 16, 49 (2017)CrossRefGoogle Scholar
  32. 32.
    K.A. Gonchar, L.A. Osminkina, R.A. Galkin, M.B. Gongalsky, V.S. Marshov, V.Y. Timoshenko, M.N. Kulmas, V.V. Solovyev, A.A. Kudryavtsev, V.A. Sivakov, J. Nanoelectron. Optoelectron. 7, 602 (2012)CrossRefGoogle Scholar
  33. 33.
    A.S. Togonal, L. He, P.R. Cabarrocas, Rusli, Langmuir 30, 10290 (2014)CrossRefGoogle Scholar
  34. 34.
    Z. Guo, J.Y. Jung, K. Zhou, Y. Xiao, S.W. Jee, S.A. Moiz, J.H. Lee, in Proceedings of SPIE, vol. 7772, p. 77721C (2010)Google Scholar
  35. 35.
    J. Barbe, M.L. Tietze, M. Neophytou, B. Murali, E. Alarousu, A.E. Labban, M. Abulikemu, W. Yue, O.F. Mohammed, I. McCulloch, A. Amassian, S. Gobbo, ACS Appl. Mater. Interfaces 9, 11828 (2017)CrossRefGoogle Scholar
  36. 36.
    X. Wan, Y. Xu, H. Guo, K. Shehzad, A. Ali, Y. Liu, J. Yang, D. Dai, C.T. Lin, L. Liu, H.C. Cheng, F. Wang, X. Wang, H. Lu, W. Hu, X. Pi, Y. Dan, J. Luo, T. Hasan, X. Duan, X. Li, J. Xu, D. Yang, T. Ren, B. Yu, NPJ 2D Mater. Appl. 1, 4 (2017)CrossRefGoogle Scholar
  37. 37.
    L. Shi, S. Nihtianov, IEEE Sens. J. 12, 2453 (2012)CrossRefGoogle Scholar
  38. 38.
    Y.H. Chen, S.A. Lyon, IEEE J. Quantum Electron. 25, 1053 (1989)CrossRefGoogle Scholar
  39. 39.
    M. Abbas, S.Z. Hassan, M.H. Naser, M. Ahmed, Appl. Surf. Sci. 305, 445 (2014)CrossRefGoogle Scholar
  40. 40.
    Z. Guo, D. Zhao, Y. Liu, D. Shen, J. Zhang, B. Li, Appl. Phys. Lett. 93, 163501 (2008)CrossRefGoogle Scholar
  41. 41.
    Z.S. Hosseini, M. Shasti, S. Ramezani Sani, A. Mortezaali, J. Appl. Phys. 119, 014503 (2016)CrossRefGoogle Scholar
  42. 42.
    P. Chinnamuthu, J.C. Dhar, A. Mondal, A. Bhattacharyya, N.K. Singh, J. Phys. D 45, 135102 (2012)CrossRefGoogle Scholar
  43. 43.
    H. Zhou, J. Mei, H. Wang, G.J. Fang, Mater. Sci. Semicond. Process. 38, 67 (2015)CrossRefGoogle Scholar
  44. 44.
    R. Dalvand, S. Mahmud, R. Shabannia, J. Mater. Sci.: Mater. Electron. 29, 4999 (2018)Google Scholar
  45. 45.
    S.R. Sani, Chin. Phys. B 23, 107302 (2014)CrossRefGoogle Scholar
  46. 46.
    S.N. Mazhir, G.H. Mohamed, A.A. Abdullah, M.D. Radhi, Int. J. Adv. Res. 3, 1060 (2015)Google Scholar
  47. 47.
    G. Rawat, D. Somvanshi, H. Kumar, Y. Kumar, C. Kumar, S. Jit, IEEE Trans. Nanotechnol. 15, 193–200 (2016)CrossRefGoogle Scholar
  48. 48.
    H. Zhou, G. Fang, L. Yuan, C. Wang, X. Yang, Appl. Phys. Lett. 94, 013503 (2009)CrossRefGoogle Scholar
  49. 49.
    J.H. Choi, S.N. Das, J.P. Kar, Solid State Electron. 54, 1582 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Amity Institute of Advanced Research and Studies (Materials and Devices) & Amity Institute of Renewable and Alternative EnergyAmity UniversityNoidaIndia

Personalised recommendations