Effect of MgO addition on sintering temperature, crystal structure, dielectric and ferroelectric properties of lead-free BZT ceramics

  • Yuan Xu
  • Kaituo Zhang
  • Lei Fu
  • Ting Tong
  • Le Cao
  • Qifeng Zhang
  • Ligui ChenEmail author


MgO addition Ba(Zr0.15Ti0.85)O3 (BZT) ceramics was prepared using conventional solid state reaction method and effect the MgO content in BZT ceramics on their sintering temperature, microscopic appearance, dielectric properties and ferroelectric properties was investigated. The result is that the addition of MgO can greatly reduce the sintering temperature of BZT ceramics. The average grain size can be gradually reduced as the concentration of MgO increases. The lattice constant is reduced by Mg2+ entering the crystal structure instead of Ti4+ or Zr4+. BZT ceramics exhibit excellent dielectric properties when a small amount of MgO was added. The maximum dielectric constant moves to the low temperature region when MgO content was increases. The hysteresis loop becomes thinner and the coercive field was significantly reduced.



This work was supported by National Natural Science Foundation of China (Grant No. 51703121).


  1. 1.
    J.F. Scott, Applications of modern ferroelectrics. Science 315(5814), 954–959 (2007)CrossRefGoogle Scholar
  2. 2.
    T. Tsurumi, H. Adachi, H. Kanemoto et al., Dielectric properties of BaTiO3-based ceramics under high electric field. J. Mater. Res. 17(4), 755–759 (2002)CrossRefGoogle Scholar
  3. 3.
    Y. Li, K.S. Moon, C.P. Wong, Electronics without Lead. Science 308(5727), 1419–1420 (2005)CrossRefGoogle Scholar
  4. 4.
    W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)CrossRefGoogle Scholar
  5. 5.
    Y. Zhang, Y. Li, H. Zhu et al., Influence of Zr/Ti ratio on the dielectric properties of Ba (ZrxTi1–x) O3, ceramics for high-voltage capacitor applications. J. Mater. Sci.: Mater. Electron. 27(9), 9572–9576 (2016)Google Scholar
  6. 6.
    H. Chen, C. Yang, C. Fu et al., Microstructure and dielectric properties of Ba (ZrxTi1–x) O3 ceramics. J. Mater. Sci. Mater. Electron. 19(4), 379–382 (2008)CrossRefGoogle Scholar
  7. 7.
    A. Zeb, S.J. Milne, High temperature dielectric ceramics: a review of temperature-stable high-permittivity perovskites. J. Mater. Sci. Mater. Electron. 26(12), 9243–9255 (2015)Google Scholar
  8. 8.
    X.G. Tang, K.H. Chew, H.L.W. Chan, Diffuse phase transition and dielectric tunability of Ba(ZryTi1–y)O3 relaxor ferroelectric ceramics. Acta Mater. 52(17), 5177–5183 (2004)CrossRefGoogle Scholar
  9. 9.
    S.M. Neirman, The Curie point temperature of Ba(Ti1 – xZrx)O3 solid solutions. J. Mater. Sci. 23(11), 3973–3980 (1988)CrossRefGoogle Scholar
  10. 10.
    P. Jarupoom, K. Pengpat, G. Rujijanagul, Enhanced piezoelectric properties and lowered sintering temperature of Ba(Zr0.07Ti0.93)O3, by B2O3, addition. Curr. Appl. Phys. 10(2), 557–560 (2010)CrossRefGoogle Scholar
  11. 11.
    W.G. Yang, B.P. Zhang, N. Ma et al., High piezoelectric properties of BaTiO3–xLiF ceramics sintered at low temperatures. J. Eur. Ceram. Soc. 32(4), 899–904 (2012)CrossRefGoogle Scholar
  12. 12.
    P. Zheng, J.L. Zhang, S.F. Shao et al., Piezoelectric properties and stabilities of CuO-modified Ba(Ti,Zr)O3 ceramics. Appl. Phys. Lett. 94(3), 84 (2009)CrossRefGoogle Scholar
  13. 13.
    Z. Sun, L. Li, H. Zheng et al., Dielectric properties and diffuse phase transition behavior of CuO-doped lead-free Ba(ZrxTi1–x)O3, ceramics. Ceram. Int. 42(10), 12246–12252 (2016)CrossRefGoogle Scholar
  14. 14.
    D. Liang, X. Zhu, J. Zhu et al., Effects of CuO addition on the structure and electrical properties of low temperature sintered Ba(Zr,Ti)O3, lead-free piezoelectric ceramics. Ceram. Int. 40(2), 2585–2592 (2014)CrossRefGoogle Scholar
  15. 15.
    Z. Sun, Y. Pu, Z. Dong et al., Effect of Zr 4+, content on the TC, range and dielectric and ferroelectric properties of BaZrxTi1–xO3, ceramics prepared by microwave sintering. Ceram. Int. 40(2), 3589–3594 (2014)CrossRefGoogle Scholar
  16. 16.
    T. Hoshina, T. Furuta, T. Yamazaki et al., Grain size effect on dielectric properties of Ba(Zr,Ti)O3 ceramics. Jpn. J. Appl. Phys. 51(9), 539–545 (2012)Google Scholar
  17. 17.
    D.Y. Wang, Y. Wang, X.Y. Zhou et al., Enhanced in-plane ferroelectricity in Ba0.7Sr0.3TiO3 thin films grown on MgO (001) single-crystal substrate. Appl. Phys. Lett. 86(21), 416 (2005)Google Scholar
  18. 18.
    X.Y. Zhou, D.Y. Wang, R.K. Zheng et al., Thickness dependence of in-plane dielectric and ferroelectric properties of Ba0.7Sr0.3TiO3 thin films epitaxially grown on LaAlO3. Appl. Phys. Lett. 90(13), 3081 (2007)CrossRefGoogle Scholar
  19. 19.
    N. Ding, X.G. Tang, X.D. Ding et al., Effect of Zr/Ti ratio on the dielectric and piezoelectric properties of Mn-doped Ba(Zr, Ti)O3 ceramics. J. Mater. Sci.: Mater. Electron. 25(5), 2305–2310 (2014)Google Scholar
  20. 20.
    P. Zheng, J.L. Zhang, Y.Q. Tan et al., Grain-size effects on dielectric and piezoelectric properties of poled BaTiO3 ceramics. Acta Mater. 60(13–14), 5022–5030 (2012)CrossRefGoogle Scholar
  21. 21.
    Z. Xu, R. Chu, J. Hao et al., Effects of grain size on the dielectric behavior of layered perovskite SrBi 4Ti4O15, ferroelectric ceramics. Phys. B Phys. Condens. Matter 404(14–15), 2045–2046 (2009)CrossRefGoogle Scholar
  22. 22.
    J.C. Wang, P. Zheng, R.Q. Yin et al., Different piezoelectric grain size effects in BaTiO3, ceramics. Ceram. Int. 41(10), 14165–14171 (2015)CrossRefGoogle Scholar
  23. 23.
    W. Cai, C. Fu, J. Gao et al., Effect of hafnium on the microstructure, dielectric and ferroelectric properties of Ba[Zr0.2Ti0.8]O3, ceramics. Ceram. Int. 38(4), 3367–3375 (2012)CrossRefGoogle Scholar
  24. 24.
    Z. Sun, L. Li, H. Zheng et al., Effects of sintering temperature on the microstructure and dielectric properties of BaZr0.2Ti0.8O3, ceramics. Ceram. Int. 41(9), 12158–12163 (2015)CrossRefGoogle Scholar
  25. 25.
    A.J. Moulson, J.M. Herbert, Electroceramics: Materials, Properties, Applications (Wiley, Hoboken, 2003)CrossRefGoogle Scholar
  26. 26.
    W. Jo, J.B. Ollagnier, J.L. Park et al., CuO as a sintering additive for (Bi1/2Na1/2)TiO3–BaTiO3–(K0.5Na0.5)NbO3 lead-free piezoceramics. J. Eur. Ceram. Soc. 31(12), 2107–2117 (2011)CrossRefGoogle Scholar
  27. 27.
    S.B. Reddy, M.S.R. Rao, K.P. Rao, Observation of high permittivity in Ho substituted BaZr0.1Ti0.9O3 ceramics. Appl. Phys. Lett. 91(2), 91 (2007)Google Scholar
  28. 28.
    X.G. Tang, J. Wang, X.X. Wang et al., Effects of grain size on the dielectric properties and tunabilities of sol–gel derived Ba(Zr0.2Ti0.8)O3, ceramics. Solid State Commun. 131(3), 163–168 (2004)CrossRefGoogle Scholar
  29. 29.
    A.V. Polotai, A.V. Ragulya, C.A. Randall, Preparation and size effect in pure nanocrystalline barium titanate ceramics. Ferroelectrics 288(1), 93–102 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuan Xu
    • 1
  • Kaituo Zhang
    • 2
  • Lei Fu
    • 1
  • Ting Tong
    • 1
  • Le Cao
    • 1
  • Qifeng Zhang
    • 1
  • Ligui Chen
    • 1
    Email author
  1. 1.School of Material Science & EngineeringShaanxi University of TechnologyHanzhongChina
  2. 2.Department of Electrical EngineeringHenan Institute of TechnologyXinxiangChina

Personalised recommendations