Advertisement

KNN/PDMS/C-based lead-free piezoelectric composite film for flexible nanogenerator

  • Mengjie Xia
  • Cuixian Luo
  • Xiaoxiao Su
  • Yinhui Li
  • Pengwei LiEmail author
  • Jie Hu
  • Gang Li
  • Huabei Jiang
  • Wendong Zhang
Article
  • 16 Downloads

Abstract

A novel approach to fabricate a high performance flexible piezoelectric nanogenerator (PNG) by employing K0.5Na0.5NbO3 (KNN)/PDMS/C composite thin film has been proposed. The formed 12 wt% C doping KNN/PDMS PNG demonstrates a higher relative permittivity (Ɛr, 173.56) and larger remanent polarization (Pr, 1.84 µC/cm2) than pure KNN/PDMS film, thus serving as the possible origins of their comparative piezoelectric activities, which could generate an maximum output voltage of 10.55 V (3.3 times as much as the PNG without C doping). Besides, the PNG is able to light up a commercial green light-emitting diode (LED) through an energy storage capacitor (47 µF), showing its great potential as power of wearable and mobile devices.

Notes

Acknowledgements

This work was supported by the Special Talents in Shanxi Province (Grant No. 201605D211020), the Projects of International Cooperation and Exchanges of Shanxi Province (Grant No. 201803D421029), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (Grant No. 2016136).

Supplementary material

10854_2019_1070_MOESM1_ESM.docx (840 kb)
Supplementary material 1 (DOCX 839 KB)

References

  1. 1.
    B. Sun, X. Li, R. Zhao, H. Ji, J. Qiu, N. Zhang, D. He, C. Wang, J. Mater. Sci. 54, 2754 (2019)CrossRefGoogle Scholar
  2. 2.
    E. Manolas, Energy 65, 692 (2014)CrossRefGoogle Scholar
  3. 3.
    Y. Liang, B. Yu, L. Wang, Renew. Energy 131, 700 (2019)CrossRefGoogle Scholar
  4. 4.
    E. Akrami, A. Gholami, M. Ameri, M. Zandi, Energy Convers. Manage. 175, 21 (2018)CrossRefGoogle Scholar
  5. 5.
    Z.L. Wang, W. Wu, Angew. Chem. Int. Ed. 51, 2 (2012)CrossRefGoogle Scholar
  6. 6.
    R. Yang, Y. Qin, L. Dai, Z.L. Wang, Nat. Nanotechnol. 4, 34 (2009)CrossRefGoogle Scholar
  7. 7.
    Q. Liao, Z. Zhang, X. Zhang, M. Mohr, Y. Zhang, H. Fecht, Nano Res. 7, 917 (2014)CrossRefGoogle Scholar
  8. 8.
    W. Wu, S. Bai, M. Yuan, Y. Qin, Z.L. Wang, T. Jing, ACS Nano 6, 6231 (2012)CrossRefGoogle Scholar
  9. 9.
    Q.L. Zhao, G.P. He, J.J. Di, W.L. Song, Z.L. Hou, P.P. Tan, D.W. Wang, M.S. Cao, ACS Appl. Mater. Interfaces 9, 24696 (2017)CrossRefGoogle Scholar
  10. 10.
    G.T. Hwang, H. Park, J.H. Lee, S. Oh, K.I. Park, M. Byun, H. Park, G. Ahn, C.K. Jeong, K. No, H. Kwon, S.G. Lee, B. Joung, K.J. Lee, Adv. Mater. 26, 4880 (2014)CrossRefGoogle Scholar
  11. 11.
    S.H. Shin, Y.H. Kim, M.H. Lee, J.Y. Jung, J. Nah, ACS Nano 8, 2766 (2014)CrossRefGoogle Scholar
  12. 12.
    Y. Guo, K.I. Kakimoto, H. Ohsato, Appl. Phys. Lett. 85, 4121 (2004)CrossRefGoogle Scholar
  13. 13.
    W. Chen, Z. Yu, J. Pang, P. Yu, G. Tan, C. Ning, Materials 10, 345 (2017)CrossRefGoogle Scholar
  14. 14.
    Y. Zhao, H. Fan, X. Ren, C. Long, G. Liu, Z. Liu, J. Mater. Chem. C. 4, 7324 (2016)CrossRefGoogle Scholar
  15. 15.
    G. Zhang, P. Zhao, X. Zhang, K. Han, T. Zhao, Y. Zhang, C.K. Jeong, S. Jiang, S. Zhang, Q. Wang, Energy Environ. Sci. 11, 2046 (2018)CrossRefGoogle Scholar
  16. 16.
    M. Shen, Y. Qin, Y. Zhang, M.A. Marwat, C. Zhang, W. Wang, M. Li, H. Zhang, G. Zhang, S. Jiang, J. Am. Ceram. Soc. (2019).  https://doi.org/10.1111/jace.16250 Google Scholar
  17. 17.
    Z. Wang, Y. Hu, W. Wang, D. Zhou, Y. Wang, H. Gu, Integr. Ferroelectr. 142, 24 (2013)CrossRefGoogle Scholar
  18. 18.
    X. Ren, H. Fan, Y. Zhao, Z. Liu, ACS Appl. Mater. Inter. 8, 26190 (2016)CrossRefGoogle Scholar
  19. 19.
    T. Huang, H. Yu, H. Wang, Q. Zhang, M. Zhu, J. Phys. Chem. C 120, 26600 (2016)CrossRefGoogle Scholar
  20. 20.
    A. Teka, S. Bairagi, M. Shahadat, M. Joshi, S.Z. Ahammad, S.W. Ali, Polym. Adv. Technol. 29, 2537 (2018)CrossRefGoogle Scholar
  21. 21.
    H.B. Kang, C.S. Han, J.C. Pyun, W.H. Ryu, C.Y. Kang, Y.S. Cho, Compos. Sci. Technol. 111, 1 (2015)CrossRefGoogle Scholar
  22. 22.
    C.K. Jeong, J. Lee, S. Han, J. Ryu, G.T. Hwang, D.Y. Park, J.H. Park, S.S. Lee, M. .Byun, S.H. Ko, K.J. Lee, Adv. Mater. 27, 2866 (2015)CrossRefGoogle Scholar
  23. 23.
    C.K. Jeong, K.I. Park, J. Ryu, G.T. Hwang, K.J. Lee, Adv. Funct. Mater. 24, 2620 (2014)CrossRefGoogle Scholar
  24. 24.
    C. Baek, J.H. Yun, J.E. Wang, C.K. Jeong, K.J. Lee, K.I. Park, D.K. Kim, Nanoscale 8, 17632 (2016)CrossRefGoogle Scholar
  25. 25.
    Y. Jin, N. Xia, R.A. Gerhardt, Nano Energy 30, 407 (2016)CrossRefGoogle Scholar
  26. 26.
    C. Jiten, M. Rawat, A. Bhattacharya, K.C. Singh, Mater. Res. Bull. 90, 162 (2017)CrossRefGoogle Scholar
  27. 27.
    A.B. Haugen, F. Madaro, L.P. Bjørkeng, T. Grande, M.A. Einarsrud, J. Eur. Ceram. Soc. 35, 1449 (2015)CrossRefGoogle Scholar
  28. 28.
    K. Wang, J.F. Li, Appl. Phys. Lett. 91, 135 (2007)CrossRefGoogle Scholar
  29. 29.
    R. Yang, Y. Qin, C. Li, L. Dai, Z.L. Wang, Appl. Phys. Lett. 94, 022905 (2009)CrossRefGoogle Scholar
  30. 30.
    K.I. Park, S.B. Bae, S.H. Yang, H.I. Lee, K. Lee, S.J. Lee, Nanoscale 6, 8962 (2014)CrossRefGoogle Scholar
  31. 31.
    Z. Dang, Y. Shen, C.W. Nan, Appl. Phys. Lett. 81, 4814 (2002)CrossRefGoogle Scholar
  32. 32.
    Z. Dang, Y. Lin, C.W. Nan, Adv. Mater. 15, 1625 (2003)CrossRefGoogle Scholar
  33. 33.
    L. Zhang, K. Chen, S. Wang, S. Chen, S. Niu, Z. Wang, P. Du, Mater. Lett. 233, 306 (2018)CrossRefGoogle Scholar
  34. 34.
    K.I. Park, M. Lee, Y. Liu, S. Moon, G.T. Hwang, G. Zhu, J.E. Kim, S.O. Kim, D.K. Kim, Z.L. Wang, K.J. Lee, Adv. Mater. 24, 2999 (2012)CrossRefGoogle Scholar
  35. 35.
    C. Seoul, Y.T. Kim, C.K. Baek, J. Polym. Sci. Pol. Phys. 41, 1572 (2003)CrossRefGoogle Scholar
  36. 36.
    M.S. Khandekar, R.C. Kambaleb, J.Y. Patil, Y.D. Kolekar, S.S. Suryavanshi, J. Alloys Compd. 509, 1861 (2011)CrossRefGoogle Scholar
  37. 37.
    V. Manikandan, A. Vanitha, E.J. Kumar, J. Chandrasekaran, J. Magn. Magn. Mater. 432, 477 (2017)CrossRefGoogle Scholar
  38. 38.
    S. Nayak, D. Khastgir, J. Appl. Polym. Sci.  https://doi.org/10.1002/APP.47307 (2019)Google Scholar
  39. 39.
    Y.M. You, W.Q. Liao, D. Zhao, H.Y. Ye, Y. Zhang, Q. Zhou, X. Niu, J. Wang, P.F. Li, D.W. Fu, Z. Wang, S. Gao, K. Yang, J.M. Liu, J. Li, Y. Yan, Y. Yan, R.G. Xiong, Science 357, 306 (2017)CrossRefGoogle Scholar
  40. 40.
    Y. Sun, F. Guo, Q. Lu, S. Zhao, Ceram. Int. 44, 13994 (2018)CrossRefGoogle Scholar
  41. 41.
    W. Xing, Y. Ma, Y. Bai, S. Zhao, Mater. Lett. 161, 216 (2015)CrossRefGoogle Scholar
  42. 42.
    L. Wang, W. Ren, P. Shi, X. Wu, J. Alloys Compd. 608, 202 (2014)CrossRefGoogle Scholar
  43. 43.
    J.L. Zhang, P.F. Ji, Y.Q. Wu, X. Zhao, Y.Q. Tan, C.L. Wang, Appl. Phys. Lett. 104, 222909 (2014)CrossRefGoogle Scholar
  44. 44.
    S. Barrau, P. Demont, A. Peigney, C. Laurent, C. Lacabanne, Macromolecules 36, 5187 (2003)CrossRefGoogle Scholar
  45. 45.
    A.K. Jonscher, Nature 267, 673 (1977)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mengjie Xia
    • 1
  • Cuixian Luo
    • 1
  • Xiaoxiao Su
    • 1
  • Yinhui Li
    • 1
  • Pengwei Li
    • 1
    Email author
  • Jie Hu
    • 1
  • Gang Li
    • 1
  • Huabei Jiang
    • 2
  • Wendong Zhang
    • 1
  1. 1.Micro-Nano System Research Center, College of Information and ComputerTaiyuan University of TechnologyTaiyuanChina
  2. 2.Biomedical Optics Laboratory, Department of Medical Engineering, College of EngineeringUniversity of South FloridaTampaUSA

Personalised recommendations