Advertisement

Temperature and plasmon dependent Y6O5F8:Ho3+, Yb3+ up-conversion phosphors

  • Changil Park
  • Jungmin Hong
  • Sangmoon ParkEmail author
Article
  • 13 Downloads

Abstract

Optical materials composed of an Y5.7−xHoxYb0.3O5F8 (x = 0.006–0.06) solid solution were prepared through a solid-state reaction using excess NH4F flux at 950 °C for 2 h. X-ray diffraction patterns were obtained from samples of Y5.7−xHoxYb0.3O5F8 prepared using an Y(Ho,Yb)O3/2:NH4F molar ratio of 1:2. The effective up-conversion green emission spectra and dependence of the emission intensity on the pump power (in the range of 77–118 mW) for the Y5.67Ho0.03Yb0.3O5F8 phosphor were investigated during excitation with a diode laser with a wavelength of 980 nm. Temperature-dependent green up-conversion emissions and desired Commission Internationale de l’Eclairage (CIE) values, including emissions from green to yellow wavelength regions, were realized with the phosphors at temperatures from 25 to 175 °C under 980-nm excitation. The green-fluorescence intensity of the Y5.67Ho0.03Yb0.3O5F8 phosphor was considerably enhanced by surface plasmon resonance of Au nanoparticles.

Notes

Acknowledgements

We acknowledge financial supports from the Korea Foundation for the Advancement of Science & Creativity (KOFAC) funded by the Korean Government (MOE, Project No. Sbj000025149) and Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology (NRF-2018R1D1A3B07048543). This work was supported by the BB21 + Project in 2018.

References

  1. 1.
    E. Downing, L. Hesselink, J. Ralston, R. Macfarlane, A three-color, solid-state, three-dimensional display. Science 273, 1185–1189 (1996)CrossRefGoogle Scholar
  2. 2.
    C. Strümpel, M. McCann, G. Beaucarne, V. Arkhipov, A. Slaoui, V. Švrcek, C. Del, I. Cañizo, Tobias, Modifying the solar spectrum to enhance silicon solar cell efficiency—an overview of available materials. Sol. Energy Mater. Sol. Cells 91, 238–249 (2007)CrossRefGoogle Scholar
  3. 3.
    H.Q. Wang, M. Batentschuk, A. Osvet, L. Pinna, Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv. Mater. 23, 2675–2680 (2011)CrossRefGoogle Scholar
  4. 4.
    W. Xu, H. Zhao, Y. Li, L. Zheng, Z. Zhang, W. Cao, Optical temperature sensing through the upconversion luminescence from Ho3+/Yb3+ codoped CaWO4. Sens. Actuators B 188, 1096–1100 (2013)CrossRefGoogle Scholar
  5. 5.
    Z. Zhou, H. Hu, H. Yan, T. Yi, K. Huang, M. Yu, F. Li, Up-conversion luminescent switch based on photochromic diarylethene and rare-earth nanophosphors. Chem. Commun. 39, 4786–4788 (2008)CrossRefGoogle Scholar
  6. 6.
    J. Chen, J.X. Zhao, Upconversion nanomaterials: synthesis, mechanism, and applications in sensing. Sensors 12, 2414–2435 (2012)CrossRefGoogle Scholar
  7. 7.
    X.D. Wang, O.S. Wolfbeis, R.J. Meier, Luminescent probes and sensors for temperature. Chem. Soc. Rev. 42, 7834–7869 (2013)CrossRefGoogle Scholar
  8. 8.
    X. Wang, Q. Liu, Y. Bu, C.-S. Liu, T. Liu, X. Yan, Optical temperature sensing of rare-earth ion doped phosphors. RSC Adv. 5, 86219–86236 (2015)CrossRefGoogle Scholar
  9. 9.
    W. Xu, X. Gao, L. Zheng, P. Wang, Z. Zhang, W. Cao, Optical thermometry through green upconversion emissions in Er3+/Yb3+-codoped CaWO4 phosphors. Appl. Phys. Express 5, 072201 (2012)CrossRefGoogle Scholar
  10. 10.
    S. Park, W. Yang, C.Y. Park, M. Noh, S. Choi, D. Park, H.S. Jang, S.H. Cho, Up-conversion routines of Er3+–Yb3+ doped Y6O5F8 and YOF phosphors. Mater. Res. Bull. 71, 25–29 (2015)CrossRefGoogle Scholar
  11. 11.
    D.J.M. Bevan, J. Mohyla, B.F. Hoskins, R.J. Steen, The crystal structures of some Vernier phases in the yttrium oxide-fluoride system. Eur. J. Solid State Inorg. Chem. 27, 451–456 (1990)Google Scholar
  12. 12.
    V. Amendola, R. Pilot, M. Frasconi, O.M. Maragò, M.A. Iatì, Surface plasmon resonance in gold nanoparticles: a review. J. Phys. Condens. Matter 29, 203002 (2017)CrossRefGoogle Scholar
  13. 13.
    L. Sudheendra, V. Ortalan, S. Dey, N.D. Browning, I.M. Kennedy, Plasmonic enhanced emissions from cubic NaYF4:Yb:Er/Tm nanophosphors. Chem. Mater. 23, 2987–2993 (2011)CrossRefGoogle Scholar
  14. 14.
    M. Steiner, C. Debus, A.V. Failla, A.J. Meixner, Plasmon-enhanced emission in gold nanoparticle aggregates. J. Phys. Chem. C 112, 3103–3108 (2008)CrossRefGoogle Scholar
  15. 15.
    W. Zhang, Q. Li, M. Qiu, A plasmon ruler based on nanoscale photothermal effect. Opt. Express 21, 172–181 (2013)CrossRefGoogle Scholar
  16. 16.
    S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, O. Benson, Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals. Nano Lett. 10, 134–138 (2010)CrossRefGoogle Scholar
  17. 17.
    H. Zhang, Y. Li, I.A. Ivanov, Y. Qu, Y. Huang, X. Duan, Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 49, 2865–2868 (2010)CrossRefGoogle Scholar
  18. 18.
    M. Saboktakin, X. Ye, S.J. Oh, S.-H. Hong, A.T. Fafarman, U.K. Chettiar, N. Engheta, C.B. Murray, C.R. Kagan, Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS Nano 6, 8758–8766 (2012)CrossRefGoogle Scholar
  19. 19.
    D.M. Wu, A. García-Etxarri, A. Salleo, J.A. Dionne, Plasmon-enhanced upconverion. J. Phys. Chem. Lett. 5, 4020–4031 (2014)CrossRefGoogle Scholar
  20. 20.
    X. Chai, J. Li, X. Wang, Y. Li, X. Yao, Upconversion luminescence and temperature-sensing properties of Ho3+/Yb3+-codoped ZnWO4 phosphors based on fluorescence intensity ratios. RSC Adv. 7, 40046–40052 (2017)CrossRefGoogle Scholar
  21. 21.
    W. Noh, S. Park, Synthesis and distinct up-converting behaviors of Er3+, Yb3+ doped LaOF and LaO0.65F1.7 phosphors. Opt. Mater. 66, 589–594 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Park, S.H. Cho, Spectral-converting behaviors of Er3+ and Er3+–Yb3+ doped YOCl phosphors. J. Alloys Compd. 584, 524–529 (2014)CrossRefGoogle Scholar
  23. 23.
    A. Pandey, V.K. Rai, R. Dey, K. Kumar, Enriched green upconversion emission in combustion synthesized Y2O3:Ho3+–Yb3+ phosphor. Mater. Chem. Phys. 139, 483–488 (2013)CrossRefGoogle Scholar
  24. 24.
    R. Dey, A. Kumara, A.K. Soni, V.K. Rai, CaMoO4:Ho3+–Yb3+–Mg2+ upconverting phosphor for application in lighting devices and optical temperature sensing. Sens. Actuators B 210, 581–588 (2015)CrossRefGoogle Scholar
  25. 25.
    R. Martín-Rodríguez, A. Meijerink, Infrared to near-infrared and visible upconversion mechanisms in LiYF4: Yb3+, Ho3+. J. Lumin. 147, 147–154 (2014)CrossRefGoogle Scholar
  26. 26.
    C.C. Lin, R.S. Liu, Y.S. Tang, S.F. Hu, Full-color and thermally stable KSrPO4: Ln (Ln = Eu, Tb, Sm) phosphors for white-light-emitting diodes. J. Electrochem. Soc. 155, J248–J251 (2008)CrossRefGoogle Scholar
  27. 27.
    Z.C. Wu, J. Liu, M.L. Gong, Q. Su, Optimization and temperature-dependent luminescence of LiBaPO4: Eu2+ phosphor for near-UV light-emitting diodes. J. Electrochem. Soc. 156, H153–H156 (2009)CrossRefGoogle Scholar
  28. 28.
    B. Dong, B. Cao, Y. He, Z. Liu, Z. Li, Z. Feng, Temperature sensing and in vivo imaging by molybdenum sensitized visible upconversion luminescence of rare-earth oxides. Adv. Mater. 24, 1987–1993 (2012)CrossRefGoogle Scholar
  29. 29.
    A. Pandey, V.K. Rai, V. Kumar, V. Kumar, H.C. Swart, Upconversion based temperature sensing ability of Er3+–Yb3+ codoped SrWO4: an optical heating phosphors. Sens. Actuators B 209, 352–358 (2015)CrossRefGoogle Scholar
  30. 30.
    X. Chai, J. Li, X. Wang, Y. Li, X. Yao, Color-tunable upconversion photoluminescence and highly performed optical temperature sensing in Er3+/Yb3+ codoped ZnWO4. Opt. Express 24, 22438–22447 (2016)CrossRefGoogle Scholar
  31. 31.
    A.K. Soni, A. Kumari, V.K. Rai, Optical investigation in shuttle like BaMO4:Er3+–Yb3+ phosphor in display and temperature sensing. Sens. Actuators B 216, 64–71 (2016)CrossRefGoogle Scholar
  32. 32.
    R. Dey, V.K. Rai, Yb3+ sensitized Er3+ doped La2O3 phosphor in temperature sensors and display devices. Dalton Trans. 43, 111–118 (2014)CrossRefGoogle Scholar
  33. 33.
    Y. Yang, C. Mi, F. Yu, X. Su, C. Guo, G. Li, J. Zhang, L. Liu, Y. Liu, X. Li, Ceram. Int. 40, 9875–9880 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Division of Energy and Chemical Engineering, Major in Energy & Applied ChemistrySilla UniversityBusanRepublic of Korea

Personalised recommendations