Low-firing and microwave dielectric properties of a novel glass-free MoO3-based dielectric ceramic for LTCC applications

  • Guojin Shu
  • Fan Yang
  • Liang Hao
  • Qiao Zhang
  • Fancheng MengEmail author
  • Huixing LinEmail author


A novel glass-free MoO3-based dielectric ceramic of Li2Ni2(MoO4)3 was prepared by the conventional solid-state route. The phase compositions, microstructures and microwave dielectric properties were investigated. The XRD data analysis shown that Li2Ni2(MoO4)3 belongs to an orthorhmbic lyonsite-type structure with Pmcn (62) space group during the sintering temperature range from 650 to 725 °C. The Li2Ni2(MoO4)3 ceramic could be well densification at 700 °C for 2 h with 96.8% relative density and exhibited excellent microwave dielectric properties: εr = 9.2, Q × f = 41,064 GHz, τf = − 68.86 ppm/°C. Moreover, the Li2Ni2(MoO4)3 ceramic shown excellent compatible with Ag electrode, which makes it a promising candidate for advanced substrate materials in low temperature co-fired ceramic applications.



This work was financially supported by the Open Project Program of Key Laboratory of Inorganic Functional Materials and Devices, Chinese Academy of Sciences (Grant No. KLIFMD-201806).


  1. 1.
    I. Yoshihiko, Multilayered Low Temperature Cofred Ceramics (LTCC) Technology (Springer, Tokyo, 2005)Google Scholar
  2. 2.
    L.X. Pang, H. Liu, D. Zhou, Mater. Lett. 72, 128–130 (2012)CrossRefGoogle Scholar
  3. 3.
    H.F. Zhou, K.G. Wang, W.D. Sun, Mater. Lett. 217, 20–22 (2018)CrossRefGoogle Scholar
  4. 4.
    H.C. Xiang, C.C. Li, Y. Tang, L. Fang, J. Eur. Ceram. Soc. 37(13), 3959–3963 (2017)CrossRefGoogle Scholar
  5. 5.
    H. Yang, B. Tang, Z.X. Fang, S.R. Zhang, J. Am. Ceram. Soc. (2018). Google Scholar
  6. 6.
    W.Q. Liu, R.Z. Zuo, J. Eur. Ceram. Soc. 38, 339–342 (2017)CrossRefGoogle Scholar
  7. 7.
    N. Joseph, J. Varghese, M. Teirikangas, Composites B 141, 214–220 (2018)CrossRefGoogle Scholar
  8. 8.
    G.Q. Zhang, H. Wang, J. Guo, J. Am. Ceram. Soc. 98(2), 528–533 (2015)CrossRefGoogle Scholar
  9. 9.
    G.Q. Zhang, J. Guo, L. He, J. Am. Ceram. Soc. 97(1), 241–245 (2014)CrossRefGoogle Scholar
  10. 10.
    G.Q. Zhang, J. Guo, H. Wang, J. Am. Ceram. Soc. 100(6), 2604–2611 (2017)CrossRefGoogle Scholar
  11. 11.
    H.H. Xi, D. Zhou, B. He, J. Am. Ceram. Soc. 97(5), 1375–1378 (2014)CrossRefGoogle Scholar
  12. 12.
    H.D. Xie, H.H. Xi, J. Eur. Ceram. Soc. 34(15), 4089–4093 (2014)CrossRefGoogle Scholar
  13. 13.
    D. Zhou, H. Wang, L.X. Pang, J. Am. Ceram. Soc. 92(10), 2242–2246 (2009)CrossRefGoogle Scholar
  14. 14.
    D. Zhou, C.A. Randall, H. Wang, J. Am. Ceram. Soc. 93(4), 1096–1100 (2010)CrossRefGoogle Scholar
  15. 15.
    M. Ozima, T. Zoltai, J. Cryst. Growth 34(2), 301–303 (1976)CrossRefGoogle Scholar
  16. 16.
    H.F. Zhou, W.D. Sun, X.B. Liu, K.G. Wang, Ceram. Int. 45(2), 2629–2634 (2019)CrossRefGoogle Scholar
  17. 17.
    L. Fang, C.X. Su, H.F. Zhou, J. Am. Ceram. Soc. 96(3), 688–690 (2013)CrossRefGoogle Scholar
  18. 18.
    C.F. Tseng, P.J. Tseng, C.M. Chang, J. Am. Ceram. Soc. 97, 1918–1922 (2014)CrossRefGoogle Scholar
  19. 19.
    G.K. Choi, J.R. Kim, S.H. Yoon, J. Eur. Ceram. Soc. 27(8–9), 3063–3067 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringChongqing University of TechnologyChongqingPeople’s Republic of China
  2. 2.Key Laboratory of Inorganic Functional Materials and Devices, Shanghai Institute of CeramicsChinese Academy of SciencesShanghaiPeople’s Republic of China

Personalised recommendations