Advertisement

Camphor sulfonic acid assisted synthesis of polythiophene composite for high energy density all-solid-state symmetric supercapacitor

  • H. Vijeth
  • S. P. Ashokkumar
  • L. Yesappa
  • M. Niranjana
  • M. Vandana
  • H. DevendrappaEmail author
Article
  • 22 Downloads

Abstract

Here, we report a high energy density all-solid-state symmetric supercapacitor (SSC) based on polythiophene/Al2O3 (PTCA) composite synthesized via camphor sulfonic acid assisted chemical polymerization of thiophene. An electrochemical study showed that polythiophene/50%Al2O3 (PTCA5) composite electrode exhibits the highest gravimetric specific capacitance of 780.40 Fg−1 at 0.5 Ag−1 in three electrode system. Subsequently, the all-solid-state symmetric supercapacitor (SSC) fabricated using PTCA5 electrode achieved a specific capacitance of 472.8 Fg−1 at 1 Ag−1 using PVA-KOH gel as an electrolyte. Moreover, SSC showed excellent cyclic performance with 90.54% capacitance retention of its initial capacitance even after 5000 cycles. Additionally, a superior specific energy density of 58.04 Whkg−1 was obtained at a specific power density of 533.02 Wkg−1 for the same. This high potential and high energy density device find its application in the low-cost energy storage devices. Encouragingly, the fabricated SSC is utilized to light a commercial red LED effectively to validate the real usage.

Notes

Acknowledgements

The author would like to thank Mangalore University for providing Research fellowship. Also, authors thankfully acknowledge CENSE of IISC at Bangalore, PURSE lab of Mangalore University and the director of STIC at Cochin University for providing characterization facility.

References

  1. 1.
    M. Li, J.P. Cheng, J. Wang, F. Liu, X.B. Zhang, The growth of nickel-manganese and cobalt-manganese layered double hydroxides on reduced graphene oxide for supercapacitor. Electrochim. Acta 206, 108–115 (2016)CrossRefGoogle Scholar
  2. 2.
    W. Wang, Q. Hao, W. Lei, X. Xia, X. Wang, Graphene/SnO2/polypyrrole ternary nanocomposites as supercapacitor electrode materials. RSC Adv. 2, 10268–10274 (2012)CrossRefGoogle Scholar
  3. 3.
    L.L. Zhang, X.S. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
  4. 4.
    Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, Y. Lu, High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites. ACS Nano 6, 4319–4327 (2012)CrossRefGoogle Scholar
  5. 5.
    J.P. Melo, E.N. Schulz, C. Morales-Verdejo, S.L. Horswell, M.B. Camarada, Synthesis and characterization of graphene/polythiophene (GR/PT) nanocomposites: evaluation as high-performance supercapacitor electrodes. Int. J. Electrochem. Sci. 12, 2933–2948 (2017)CrossRefGoogle Scholar
  6. 6.
    J. Zang, S.J. Bao, C.M. Li, H. Bian, X. Cui, Q. Bao, K. Lian, Well-aligned cone-shaped nanostructure of polypyrrole/RuO2 and its electrochemical supercapacitor. J. Phys. Chem. C 112, 14843–14847 (2008)CrossRefGoogle Scholar
  7. 7.
    M. Toupin, T. Brousse, D. Bélanger, Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor. Chem. Mater. 16, 3184–3190 (2004)CrossRefGoogle Scholar
  8. 8.
    Y. Zhu, S. Cheng, W. Zhou, J. Jia, L. Yang, M. Yao, M. Liu, Construction and performance characterization of α-Fe2O3/rGO composite for long cycling life supercapacitor anode. ACS Sustain. Chem. Eng. 5, 5067–5074 (2017)CrossRefGoogle Scholar
  9. 9.
    S.K. Meher, G.R. Rao, Ultralayered Co3O4 for high-performance supercapacitor applications. J. Phys. Chem. C 115, 15646–15654 (2011)CrossRefGoogle Scholar
  10. 10.
    Y. Hu, X. Tong, H. Zhuo, L. Zhong, X. Peng, Biomass-based porous N-self-doped carbon framework/polyaniline composite with outstanding supercapacitance. ACS Sustain. Chem. Eng. 5, 8663–8674 (2017)CrossRefGoogle Scholar
  11. 11.
    Q. Lu, Y. Zhou, Synthesis of mesoporous polythiophene/MnO2 nanocomposite and its enhanced pseudocapacitive properties. J. Power Sources 196, 4088–4094 (2011)CrossRefGoogle Scholar
  12. 12.
    J. Li, L. Cui, X. Zhang, Preparation and electrochemistry of one-dimensional nanostructured MnO2/PPy composite for electrochemical capacitor. Appl. Surf. Sci. 256, 4339–4343 (2010)CrossRefGoogle Scholar
  13. 13.
    X. Yang, F. Zhang, L. Zhang, T. Zhang, Y. Huang, Y. Chen, A high performance graphene oxide doped ion gel as gel polymer electrolyte for all solid state supercapacitor applications. Adv. Funct. Mater. 23, 3353–3360 (2013)CrossRefGoogle Scholar
  14. 14.
    H. Wang, Y. Song, J. Zhou, X. Xu, W. Hong, J. Yan, J. Gao, High-performance supercapacitor materials based on polypyrrole composites embedded with core-sheath polypyrrole@ MnMoO4 nano rods. Electrochim. Acta 212, 775–783 (2016)CrossRefGoogle Scholar
  15. 15.
    A.S. Aricò, P. Bruce, B. Scrosati, J.M. Tarascon, W. Van Schalkwijk, Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 4, 366–377 (2005)CrossRefGoogle Scholar
  16. 16.
    E.C. Rios, A.V. Rosario, R.M. Mello, L. Micaroni, Poly (3-methylthiophene) /MnO2 composite electrodes as electrochemical capacitors. J. Power Sources 163, 1137–1142 (2007)CrossRefGoogle Scholar
  17. 17.
    R.B. Ambade, S.B. Ambade, N.K. Shrestha, R.R. Salunkhe, W. Lee, S.S. Bagde, S.H. Lee, Controlled growth of polythiophene nanofibers in TiO2 nanotube arrays for supercapacitor applications. J. Mater. Chem. A 5, 172–180 (2017)CrossRefGoogle Scholar
  18. 18.
    A. Tripathi, K.P. Misra, R.K. Shukla, Enhancement in ammonia sensitivity with fast response by doping Al2O3 in polyaniline. J. Appl. Polym. Sci. 130, 1941–1948 (2013)CrossRefGoogle Scholar
  19. 19.
    J. Arjomandi, J.Y. Lee, R. Movafagh, H. Moghanni-Bavil-Olyaei, M.H. Parvin, Polyaniline/aluminum and iron oxide nanocomposites supercapacitor electrodes with high specific capacitance and surface area. J. Electroanal. Chem. 810, 100–108 (2018)CrossRefGoogle Scholar
  20. 20.
    H. Vijeth, S.P. Ashokkumar, L. Yesappa, M. Niranjana, M. Vandana, H. Devendrappa, Flexible and high energy density solid-state asymmetric supercapacitor based on polythiophene nanocomposites and charcoal. RSC Adv. 8, 31414–31426 (2018)CrossRefGoogle Scholar
  21. 21.
    A. Tripathi, S.K. Mishra, I. Bahadur, R.K. Shukla, Optical properties of regiorandom polythiophene/Al2O3 nanocomposites and their application to ammonia gas sensing. J. Mater. Sci. Mater. Electron. 26, 7421–7430 (2015)CrossRefGoogle Scholar
  22. 22.
    Y. Fang, J. Liu, J.P. Yu, D.J. Wicksted, K. Kalkan, C.O. Topal, J. Li, Self-supported supercapacitor membranes: polypyrrole-coated carbon nanotube networks enabled by pulsed electrodeposition. J. Power Sources 195, 674–679 (2010)CrossRefGoogle Scholar
  23. 23.
    S.R. Takpire, S.A. Waghuley, Photovoltaic study of chemically derived titanium-doped polythiophene composites. J. Electron. Mater. 44, 2807–2812 (2015)CrossRefGoogle Scholar
  24. 24.
    A. Gok, M. Omastova, A.G. Yavuz, Synthesis and characterization of polythiophenes prepared in the presence of surfactants. Synth. Met. 157, 23–29 (2007)CrossRefGoogle Scholar
  25. 25.
    A. Uygun, O. Turkoglu, S. Sen, E. Ersoy, A.G. Yavuz, G.G. Batir, The electrical conductivity properties of polythiophene/TiO2 nanocomposites prepared in the presence of surfactants. Curr. Appl. Phys. 9, 866–871 (2009)CrossRefGoogle Scholar
  26. 26.
    A. Sultan, S. Ahmad, F. A. Mohammad, highly sensitive chlorine gas sensor and enhanced thermal DC electrical conductivity from polypyrrole/silicon carbide nanocomposites. RSC Adv. 6, 84200–84208 (2016)CrossRefGoogle Scholar
  27. 27.
    R.B. Ambade, S.B. Ambade, R.R. Salunkhe, V. Malgras, S.H. Jin, Y. Yamauchi, S.H. Lee, Flexible-wire shaped all-solid-state supercapacitors based on facile electropolymerization of polythiophene with ultra-high energy density. J. Mater. Chem. A 4, 7406–7415 (2016)CrossRefGoogle Scholar
  28. 28.
    D. Zhao, Q. Zhang, W. Chen, X. Yi, S. Liu, Q. Wang, H. Yu, Highly flexible and conductive cellulose-mediated PEDOT: PSS/MWCNT composite films for supercapacitor electrodes. ACS Appl. Mater. Interfaces 9, 13213–13222 (2017)CrossRefGoogle Scholar
  29. 29.
    H. Wang, Q. Hao, X. Yang, L. Lu, X. Wang, A nanostructured graphene / polyaniline hybrid material for supercapacitors. Nanoscale 2, 2164–2170 (2010)CrossRefGoogle Scholar
  30. 30.
    L. Liu, B. Shen, D. Jiang, R. Guo, L. Kong, X. Yan, Watchband like supercapacitors with body temperature inducible shape memory ability. Adv. Energy Mater. 6, 13191–13198 (2016)Google Scholar
  31. 31.
    Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, Y. Chen, Supercapacitor devices based on graphene materials. J. Phys. Chem. C 113, 13103–13107 (2009)CrossRefGoogle Scholar
  32. 32.
    A.K. Thakur, R.B. Choudhary, High-performance supercapacitors based on polymeric binary composites of polythiophene (PTP)–titanium dioxide (TiO2). Synth. Met. 220, 25–33 (2016)CrossRefGoogle Scholar
  33. 33.
    T. Alamro, M.K. Ram, Polyethylenedioxythiophene and molybdenum disulphide nanocomposite electrodes for supercapacitor applications. Electrochim. Acta 235, 623–631 (2017)CrossRefGoogle Scholar
  34. 34.
    A. Alabadi, S. Razzaque, Z. Dong, W. Wang, B. Tan, Graphene oxide-polythiophene derivative hybrid nanosheet for enhancing performance of supercapacitor. J. Power Sources 306, 241–247 (2016)CrossRefGoogle Scholar
  35. 35.
    Z.F. Li, H. Zhang, Q. Liu, L. Sun, L. Stanciu, J. Xie, Fabrication of high-surface-area graphene/polyaniline nanocomposites and their application in supercapacitors. ACS Appl. Mater. Interfaces 5, 2685–2691 (2013)CrossRefGoogle Scholar
  36. 36.
    K. Subramani, N. Sudhan, R. Divya, M. Sathish, All-solid-state asymmetric supercapacitors based on cobalt hexacyanoferrate-derived CoS and activated carbon. RSC Adv. 11, 6648–6659 (2017)CrossRefGoogle Scholar
  37. 37.
    J. Wang, Y. Yang, Z. Huang, F. Kang, Interfacial synthesis of mesoporous MnO2/polyaniline hollow spheres and their application in electrochemical capacitors. J. Power Sources 204, 236–243 (2012)CrossRefGoogle Scholar
  38. 38.
    H. Jiang, J. Ma, Li, Polyaniline–MnO2 coaxial nanofiber with hierarchical structure for high-performance supercapacitors. J. Mater. Chem. 22, 16939–16942 (2012)CrossRefGoogle Scholar
  39. 39.
    A.K. Thakur, R.B. Choudhary, M. Majumder, M. Majhi, fairly improved pseudocapacitance of PTP/PANI/TiO2 nanohybrid composite electrode material for supercapacitor applications. Ionics 24, 257–268 (2018)CrossRefGoogle Scholar
  40. 40.
    J. Arjomandi, J.Y. Lee, F. Ahmadi, M.H. Parvin, H. Moghanni-Bavil-Olyaei, Spectroelectrochemistry and electrosynthesis of polypyrrole supercapacitor electrodes based on gamma aluminum oxide and gamma iron (III) oxide nanocomposites. Electrochim. Acta 251, 212–222 (2017)CrossRefGoogle Scholar
  41. 41.
    X. He, W. Yang, X. Mao, L. Xu, Y. Zhou, Y. Chen, J. Xu, All-solid-state symmetric supercapacitors based on compressible and flexible free-standing 3D carbon nanotubes (CNTs)/poly (3, 4-ethylenedioxythiophene) (PEDOT) sponge electrodes. J. Power Sources 376, 138–146 (2018)CrossRefGoogle Scholar
  42. 42.
    X. Zhang, L. Ma, M. Gan, G. Fu, M. Jin, Y. Lei, M. Yan, Fabrication of 3D lawn-shaped N-doped porous carbon matrix/polyaniline nanocomposite as the electrode material for supercapacitors. J. Power Sources 340, 22–31 (2017)CrossRefGoogle Scholar
  43. 43.
    M. Shabani-Nooshabadi, F. Zahedi, Electrochemical reduced graphene oxide-polyaniline as effective nanocomposite film for high-performance supercapacitor applications. Electrochim. Acta 245, 575–586 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • H. Vijeth
    • 1
  • S. P. Ashokkumar
    • 1
  • L. Yesappa
    • 1
  • M. Niranjana
    • 1
  • M. Vandana
    • 1
  • H. Devendrappa
    • 1
    Email author
  1. 1.Department of PhysicsMangalore UniversityMangalagangothriIndia

Personalised recommendations