Advertisement

Investigation of electrical, magneto-dielectric and transport properties of multiferroic (1 − x) BiFeO3–(x) BaSr0.7Ti0.3O3 solid solutions

  • Subhash SharmaEmail author
  • M. P. Cruz
  • J. M. Siqueiros
  • O. Raymond-Herrera
  • V. E. Alvarez
  • R. K. Dwivedi
Article
  • 34 Downloads

Abstract

To date, many efforts are underway on single-phase multiferroic material to obtain a compound with strong magneto-dielectric coupling, improved dielectric properties and insulation behavior for their practical applications. In this work, high-quality powders of the (1 − x)BiFeO3(BFO)–(x)Ba0.7Sr0.3TiO3(BST) solid solutions were obtained by simple sol–gel assisted route. A detailed study on the interplay between the dielectric, magneto-dielectric and transport properties in ceramic samples is presented. Dielectric analysis reveals anomalies in the proximity of Néel temperature, indicating small magneto-electric coupling, which was confirmed through capacitance versus magnetic field measurements. Analysis of dc electrical response indicates no signature of Poole Frenkel (PF) and Schottky emission (SE) mechanism, but a dominating space charge-limited conduction (SLCS) mechanism was found in the studied samples. It is demonstrated a significant decrease of the current density with the increase of the BST concentration, suppressing the oxygen vacancies presence leading to an oxidation states stabilization of the Fe ions with doping. The results of the ac conductivity analysis suggest a small-polarons hopping mechanism at low-temperature region followed by ionized oxygen vacancies transport in the high-temperature region.

Notes

Acknowledgements

Subhash Sharma, acknowledges support from DGPA – UNAM Postdoc fellowship. Some co-authors also acknowledges partial support from CoNaCyT, Grants No. 282778, 280309 and PAPIIT-DGAPA-UNAM Grant No. IN105307, IN109016, and IN107918.

References

  1. 1.
    S.V. Kizelev, R.P. Ozerov, G.S. Zhdanov, Detection of magnetic order in ferroelectric BiFeO3 by neutron diffraction. Sov. Phys. Dokl. 145, 1255 (1962)Google Scholar
  2. 2.
    J.R. Teague, R. Gerson, W.J. James, Dielectric hysteresis in single crystal BiFeO3. Solid State Commun. 8, 1073 (1970)CrossRefGoogle Scholar
  3. 3.
    M. Fiebig, Revival of the magnetoelectric effect. J. Phys. D 38, R123 (2005)CrossRefGoogle Scholar
  4. 4.
    P. Royen, K. Swars, Das System Wismutoxyd-Eisenoxyd im Bereich von 0 bis 55 Mol% Eisenoxyd. Angew. Chem. 69, 779 (1957)CrossRefGoogle Scholar
  5. 5.
    A. Bokov, Z.G. Ye, Recent progress in relaxor ferroelectrics with perovskite structure. J. Mater. Sci. 41, 31–52 (2006)CrossRefGoogle Scholar
  6. 6.
    V.A. Khomchenko, D.A. Kiselev, J.M. Vieira, A.L. Kholkin, M.A. Sa, Y.G. Pogorelov, Synthesis and multiferroic properties of Bi0.8A0.2FeO3 (A = Ca, Sr, Pb) ceramics. Appl. Phys. Lett. 90, 242901–242903 (2007)CrossRefGoogle Scholar
  7. 7.
    P. Uniyal, K.L. Yadav, Study of dielectric, magnetic and ferroelectric properties in Bi1xGdxFeO3, Mater. Lett., 62 2858–28612008Google Scholar
  8. 8.
    S.W. Cheong, M. Mostovoy, Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6, 13 (2007)CrossRefGoogle Scholar
  9. 9.
    W. Eerestein, N.D. Mathur, J.F. Scott, Multiferroic and magnetoelectric materials. Nature London. 442, 759 (2006)CrossRefGoogle Scholar
  10. 10.
    H. Landolt and Landolt- Börnstein, “Ferroelectrics and Related Substances edited by New Series”, Group III 1980 A Springer, Berlin, 16 377Google Scholar
  11. 11.
    J. Wang, H.B. Neaton, H. Zeng, V. Nagarajan, S.B. Ogale, B. Liu, D. Viehland, V. Vaithya- nathan, D.G. Schlom, U.V. Waghmare, N.A. Spaldin, K.M. Rabe, M. Wuting, R. Ramesh, Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299, 1719–1722 (2003)CrossRefGoogle Scholar
  12. 12.
    K.Y. Yun, M. Noda, M. Okuyama, Prominent ferroelectricity of BiFeO3 thin films prepared by pulsed-laser deposition. Appl. Phys. Lett. 83, 3981 (2003)CrossRefGoogle Scholar
  13. 13.
    Y. Wang, Q.H. Jiang, H.C. He, C.W. Nan, Multiferroic BiFeO3 thin films prepared via a simple sol-gel method. Appl. Phys. Lett. 88, 142503 (2006)CrossRefGoogle Scholar
  14. 14.
    Y.H. Lee, J.M. Wu, Y.L. Chueh, L.J. Chou, Low-temperature growth and interface characterization of BiFeO3BiFeO3 thin films with reduced leakage current. Appl. Phys. Lett. 87, 172901 (2005)CrossRefGoogle Scholar
  15. 15.
    Z. Yan, K.F. Wang, J.F. Qu, Y. Wang,, Z.T. Song, S.L. Feng, Processing and properties of Yb-doped BiFeO3 ceramics. Appl. Phys. Lett. 91, 082906 (2007)CrossRefGoogle Scholar
  16. 16.
    J.B. Neaton, C. Ederer, U.V. Waghmare, N.A. Spaldin, K.M. Rob, First principles studies of spontaneous polarization in multiferroic BiFeO3. Phys. Rev. B 71, 014113 (2005)CrossRefGoogle Scholar
  17. 17.
    R.N.P. Choudhary, K. Perez, P. Bhattacharya, R.S. Katiyar, Structural and electrical properties of BiFeO3-Pb(ZrTi)O3 composites. Appl. Phys.A. 86, 131 (2006)CrossRefGoogle Scholar
  18. 18.
    X.D. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-ion-doped BiFeO3. Appl. Phys. Lett. 86, 062903 (2005)CrossRefGoogle Scholar
  19. 19.
    M. Kumar, K.L. Yadav, Study of room temperature magnetoelectric coupling in Ti substituted bismuth ferrite system. J. Appl. Phys. 100, 07411 (2006)Google Scholar
  20. 20.
    K. Singh, H. Ishiwara, K. Maruyama, Reduced leakage current in La and Ni coped BiFeO3 thin films. Appl. Phys. Lett. 88, 262908 (2006)CrossRefGoogle Scholar
  21. 21.
    J.K. Kim, S.S. Kim, W.J. Kim, A.S. Bhalla, R. Guo, Enhanced ferroelectric properties of Cr-doped BiFeO3 thin films grown by chemical solution deposition. Appl. Phys. Lett. 88, 132901 (2006)CrossRefGoogle Scholar
  22. 22.
    I.W. Chen, Structural origin of relaxor ferroelectrics—revisited. J. Phys. Chem. Solids 61, 197–208 (2000)CrossRefGoogle Scholar
  23. 23.
    X.H. Zheng, Z.H. Ma, P.J. Chen, D.P. Tang, N. Ma, Decomposition behavior and dielectric properties of Ti-doped BiFeO3 ceramics derived from the molten salt method. J. Mater. Sci. Mater. Electron. 23, 1533 (2012)CrossRefGoogle Scholar
  24. 24.
    A.Z. Simo˜es, F.G. Garcia, C.D.S. Riccardi, Rietveld analysis and electrical properties of lanthanum doped BiFeO3 ceramics. Mater. Chem. Phys. 116, 305 (2009)CrossRefGoogle Scholar
  25. 25.
    F. Suhua, X. Xie, F. Zhang, X. Guo, S. Yang, L. Zhang, Improved leakage and ferroelectric properties of Sr doped BiFe0.95Mn0.05O3 thin films. J. Mater. Sci.: Mater. Electron. 27, 6854–6858 (2016)Google Scholar
  26. 26.
    L.Y. Wang, D.H. Wang, H.B. Huang, Z.D. Han, Q.Q. Cao, B.X. Gu, Y.W. Du, Enhanced dielectric and ferroelectric properties of Ba and Ti co-doped BiFeO3 multiferroic ceramics. J. Alloys Compd. 46, 1–3 (2009)Google Scholar
  27. 27.
    Y. Wang, J. Li, J. Chen, Y. Deng, Ba and Ti co-doped BiFeO3 thin films via a modified chemical route with synchronous improvement in ferroelectric and magnetic behaviors. J. Appl. Phys. 113, 103904–103905 (2013)CrossRefGoogle Scholar
  28. 28.
    JianguoZhao YanhongGu, W. Zhang, H. Zheng, L. Liu, W. Chen, Structural transformation and multiferroic properties of Sm and Ti co-doped BiFeO3 ceramics with Fe vacancies. Ceram. Int. 43, 14666–14671 (2017)CrossRefGoogle Scholar
  29. 29.
    Z. Hu, M. Li, Y. Yu, J. Liu, L. Pei, J. Wang et al., Effects of Nd and high-valence Mn co-doping on the electrical and magnetic properties of multiferroic BiFeO3 ceramics. Solid State Commun. 150, 1088–1091 (2010)CrossRefGoogle Scholar
  30. 30.
    R. Gerber, G. Elbinger, Contribution of Fe2+, Mn3 + and Fe3 + ions to the magnetic anisotropy of MgxMn0.6Fe2.4 – xO4. J. Phys. C. 3, 1363–1375 (1970)CrossRefGoogle Scholar
  31. 31.
    S. Sharma, V. Singh, A. Anshul, J.M. Siqueiros, R. Dwivedi, Structural stability, enhanced magnetic, piezoelectric, and transport properties in (1- x) BiFeO3–(x)Ba0.70Sr0.30TiO3 nanoparticles. J. Appl. Phys. 123, 204102 (2018)CrossRefGoogle Scholar
  32. 32.
    S. Sharma, V. Singh and R.K. Dwivedi, Electrical properties of (1 – x) BFO – (x) PZT multiferroics synthesized by sol-gel method: transition from relaxor to non-relaxor. J. Alloy. Compd. 682, 723–729 (2016)CrossRefGoogle Scholar
  33. 33.
    B. Keimer, Transition metal oxides - Ferroelectricity driven by orbital order. Nat. Mater. 5, 933 (2006)CrossRefGoogle Scholar
  34. 34.
    X. Marti, P.J. Ferrer, A. Herrero, J. Narvaez, V. Holy, N. Barrett, M. Alexe, G. Catalan, Skin Layer of BiFeO3 Single Crystals. Phys. Rev. Lett. 106, 236101 (2011)CrossRefGoogle Scholar
  35. 35.
    Y. Ma, X.M. Chen, Enhanced multiferroic characteristics in NaNbO3-modified BiFeO3 ceramics. J. Appl. Phys. 105, 054107 (2009)CrossRefGoogle Scholar
  36. 36.
    R.K. Mishra, D.K. Pradhan, R.N.P. Choudhary, A. Banerjee, Effect of yttrium on improvement of dielectric properties and magnetic switching behavior in BiFeO3. J. Phys. 20, 045218 (2008)Google Scholar
  37. 37.
    M. Hitesh Borkar, V. Tomar, J.F. Gupta, Scott, A. Kumar, Anomalous change in leakage and displacement currents after electrical poling on lead-free ferroelectric ceramics. Appl. Phys. Lett. 107, 122904 (2015)CrossRefGoogle Scholar
  38. 38.
    A.R. Makhdoom, M.J. Akhtar b, M.A. Rafiq, M.M. Hassan, Investigation of transport behavior in Ba doped BiFeO3. Ceram. Int. 38, 3829–3834 (2012)CrossRefGoogle Scholar
  39. 39.
    B. Yu, M. Li, J. Liu, D. Guo, L. Pei, X. Zhao, Effects of ion doping at different sites on electrical properties of multiferroic BiFeO3 ceramics. J. Phys. D 41, 065003–65007 (2008)CrossRefGoogle Scholar
  40. 40.
    Z. Yan, K.F. Wang, J.F. Qu, Y. Wang, Z.T. Song, S.L. Feng, Processing and properties of Yb-doped BiFeO3 ceramics. Appl. Phys. Lett. 91, 082906–82908 (2007)CrossRefGoogle Scholar
  41. 41.
    J. Liu, M. Li, L. Pei, J. Wang, Z. Hu, X. Wang, X. Zhao, Effect of Ce and Zr codoping on the multiferroic properties of BiFeO3 thin films. Europhys. Lett. 89, 57004–57010 (2010)CrossRefGoogle Scholar
  42. 42.
    J. Liu, M. Li, L. Pei, B. Yu, D. Guo, X. Zhao, Effect of Ce doping on the microstructure and electrical properties of BiFeO3 thin films prepare by chemical solution deposition. J. Phys. D 42, 115409–115415 (2009)CrossRefGoogle Scholar
  43. 43.
    X. Qi, J. Dho, R. Tomov, M.G. Blamire, J.L. MacManus-Driscoll, Greatly reduced leakage current and conduction mechanism in aliovalent-iondoped BiFeO3. Appl. Phys. Lett. 86, 062903–62905 (2005)CrossRefGoogle Scholar
  44. 44.
    C.-H. Iakovlev, M. Solterbeck, Kuhnke, M. Es-Souni, Surface scanning probe microscopy investigation of solution deposited BiFeO3BiFeO3 thin films. J. Appl. Phys. 97, 094901 (2005)CrossRefGoogle Scholar
  45. 45.
    Y.J. Wu, Y. Gao, X.M. Chen, Dielectric relaxations of yttrium iron garnet ceramics over a broad temperature range. Appl. Phys. Lett. 91, 92912 (2007)CrossRefGoogle Scholar
  46. 46.
    G.W. Pabst, L.W. Martin, Y.H. Chu, R. Ramesh, Leakage mechanisms in BiFeO3 thin films. Appl. Phys. Lett. 90, 072902 (2007)CrossRefGoogle Scholar
  47. 47.
    R. Moos, W. Menesklou, K.H. Hardtl, Hall mobility of undoped n-type conducting strontium titanate single crystals between 19 K and 1373 K. Appl. Phys. A 61, 389 (1995)CrossRefGoogle Scholar
  48. 48.
    C. Lee, J. Destry, L.J. Brebenerc, Optical absorption and transport in semiconducting SrTi O3. Phys. Rev. B 11, 2299 (1975)CrossRefGoogle Scholar
  49. 49.
    G.S. Arya, R.K. Kotnala, N.S. Negi, Enhanced magnetic and magnetoelectric properties of In and Co co-doped BiFeO3 nanoparticles at room temperature. J. Nanoparticle Res. 16, 2155 (2014)CrossRefGoogle Scholar
  50. 50.
    D.P. Dutta, B.P. Mandal, R. Naik, G. Lawes, A.K. Tyagi, Magnetic, Ferroelectric, and Magnetocapacitive Properties of Sonochemically Synthesized Sc-Doped BiFeO3 Nanoparticles. J. Phys. Chem. C 117, 2382–2389 (2013)CrossRefGoogle Scholar
  51. 51.
    D.H. Wang, W.C. Goh, M. Ning, C.K. Ong, Effect of Ba doping on magnetic, ferroelectric, and magnetoelectric properties in mutiferroic BiFeO3 at room temperature. Appl. Phys. Lett. 88, 212907 (2006)CrossRefGoogle Scholar
  52. 52.
    S. Shalini Kumari, D.K. Pradhan, P.T. Das, K. Ortega, A. Pradhan, J.F. Kumar, Scott, R.S. Katiyar, Evidence of strong magneto-dielectric coupling and enhanced electrical insulation at room temperature in Nd and Mn co-doped bismuth ferrite. J. Appl. Phys. 122, 144102 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Subhash Sharma
    • 1
    • 2
    • 3
    Email author
  • M. P. Cruz
    • 1
  • J. M. Siqueiros
    • 1
  • O. Raymond-Herrera
    • 1
  • V. E. Alvarez
    • 3
  • R. K. Dwivedi
    • 4
  1. 1.Universidad Nacional Autónoma de México, Centro de Nanociencias y NanotecnologíaEnsenadaMexico
  2. 2.CONACyT-Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico
  3. 3.Departamento de Ingeniería Química y MetalurgiaUniversidad de SonoraHermosilloMexico
  4. 4.Department of Physics and Materials Science and EngineeringJaypee Institute of Information TechnologyNoidaIndia

Personalised recommendations