Improve the electrical and optical performance of deep ultraviolet light-emitting diodes with a w-shaped p-AlGaN layer

  • Yufei Hou
  • Zhiyou GuoEmail author


We theoretically investigate the effects of three independent p-type contact layers on the photoelectric properties of deep ultraviolet light-emitting diodes (DUV-LEDs). From the simulation results, the DUV-LED using a w-shaped p-AlGaN layer has a better photoelectric performance. The internal quantum efficiency and output power in the new structure are significantly increased compared to the two other structures. Besides, the novel structure reveals lower contact resistance and higher electroluminescence intensity, and the efficiency droop is very small at 200 mA injection current. These improvements are attributed to not only decreased electron leakage but also increased hole injection efficiency, thereby enhancing radiative recombination rates. The specially designed p-type layer provides an attractive solution for improving the photoelectric performance of DUV-LEDs with the Al-rich p-AlGaN contact layers.



Project supported by Foreign Special Fund for Science and Technology Innovation and Development of Guangzhou, Guangdong Province, China (Grant No. 201807010083).


  1. 1.
    A. Khan, K. Balakrishnan, T. Katona, Ultraviolet light-emitting diodes based on group three nitrides. Nat. Photon. 2, 77–84 (2008)CrossRefGoogle Scholar
  2. 2.
    J. Li, J.Y. Lin, H.X. Jiang, Growth of III-nitride photonic structures on large area silicon substrates. Appl. Phys. Lett. 88, 171909 (2006)CrossRefGoogle Scholar
  3. 3.
    X.L. Bao, P. Sun, S.Q. Liu, C.Y. Ye, S.P. Li, J.Y. Kang, Performance improvements for AlGaN-based deep ultraviolet light-emitting diodes with the p-type and thickened last quantum barrier. IEEE Photon. J. 7, 1–10 (2015)CrossRefGoogle Scholar
  4. 4.
    E. Kioupakis, P. Rinke, K.T. Delaney, C. Walle, Indirect auger recombination as a cause of efficiency droop in nitride light-emitting diode. Appl. Phys. Lett. 98, 161107 (2011)CrossRefGoogle Scholar
  5. 5.
    H. Hirayama, S. Fujikawa, N. Kamata, Recent progress in AlGaN-based deep-UV LEDs. Electron. Commun. 98, 1–8 (2015)CrossRefGoogle Scholar
  6. 6.
    R.K. Mondal, V. Chatterjee, S. Pal, Effect of step-graded superlattice electron blocking layer on performance of AlGaN based deep-UV light emitting diodes. Physica E 108, 233–237 (2019)CrossRefGoogle Scholar
  7. 7.
    Y.F. Hou, Z.Y. Guo, Y. Liu, M. Guo, J. Huang, S.Y. Yao, X. Zhang, X. Gong, Z.H. Xu, Performance improvement of AlGaN-based ultraviolet light-emitting diodes by amending inverted-Y-shaped barriers with alternate doped Si and Mg. Superlattices Microstruct. 107, 278–284 (2017)CrossRefGoogle Scholar
  8. 8.
    B. So, J. Kim, E. Shin, T. Kwak, T. Kim, O. Nam, Efficiency improvement of deep-ultraviolet light emitting diodes with gradient electron blocking layers. Phys. Status Solidi 215, 1700677 (2017)CrossRefGoogle Scholar
  9. 9.
    Z. Bryan, I. Bryan, J.Q. Xie, S.J. Mita, Z. Sitar, R. Collazo, High internal quantum efficiency in AlGaN multiple quantum wells grown on bulk AlN substrates. Appl. Phys. Lett. 106, 325 (2015)Google Scholar
  10. 10.
    J. Simon, V. Protasenko, C. Lian, H. Xing, D. Jena, Polarization-induced hole doping in wide-band-gap uniaxial semiconductor heterostructures. Science 327, 60–64 (2010)CrossRefGoogle Scholar
  11. 11.
    Y. Kashima, N. Maeda, E. Matsuura, M. Jo, T. Lwai, T. Morita, M. Kokubo, T. Tashiro, R. Kamimura, Y. Osada, H. Takagi, H. Hirayama, High external quantum efficiency (10%) AlGaN-based deep-ultraviolet light-emitting diodes achieved by using highly reflective photonic crystal on p-AlGaN contact layer. Appl. Phys. Express 11, 012101 (2018)CrossRefGoogle Scholar
  12. 12.
    T. Takayoshi, M. Takuya, S. Jun, N. Norimichi, T. Kenji, H. Hideki, Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency. Appl. Phys. Express 10, 031002 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Yun, H. Hirayama, Investigation of the light-extraction efficiency in 280 nm AlGaN-based light-emitting diodes having a highly transparent p-AlGaN layer. J. Appl. Phys. 121, 013105 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Xu, Q. Zhou, H. Zhang, H. Wang, X. Zhang, Improved efficiency of near-ultraviolet LEDs using a novel p-type AlGaN hole injection layer. Superlattice Microstruct. 94, 25–29 (2016)CrossRefGoogle Scholar
  15. 15.
    Y.D. Chen, H.L. Wu, E. Han, G.L. Yue, Z.M. Chen, Z.S. Wu, G. Wang, H. Jiang, High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta dopin. Appl. Phys. Lett. 106, 1142 (2015)Google Scholar
  16. 16.
    Z.H. Zhang, S.W. Huang Chen, C.S. Chu, K.K. Tian, M.Q. Fang, Y.H. Zhang, W.G. Bi, H.C. Kuo, Nearly efficiency-droop-free AlGaN-based ultraviolet light-emitting diodes with a specifically designed superlattice p-type electron blocking layer for high mg doping efficiency. Nanoscale Res. Lett. 13, 122 (2018)CrossRefGoogle Scholar
  17. 17.
    I. Vurgaftman, R.J. Meyer, L.A. Ram Mohan, Band parameters for III-V compound semiconductors and their alloys. J. Appl. Phys. 89, 5815–5875 (2001)CrossRefGoogle Scholar
  18. 18.
    Y.K. Kuo, Y.H. Chen, J.Y. Chang, M.C. Tsai, Numerical analysis on the effects of bandgap energy and polarization of electron blocking layer in near-ultraviolet light-emitting diodes. Appl. Phys. Lett. 100, 18 (2012)CrossRefGoogle Scholar
  19. 19.
    V. Fiorentini, F. Bernardini, O. Ambacher, Evidence for nonlinear macroscopic polarization in III–V nitride alloy heterostructures. Appl. Phys. Lett. 80, 1204–1206 (2002)CrossRefGoogle Scholar
  20. 20.
    M.N. Darwish, J.L. Lentz, M.R. Pinto, P.M. Zeitzoff, An improved electron and hole mobility model for general purpose device simulation. IEEE Trans. Electron Devices 44, 1529–1538 (1997)CrossRefGoogle Scholar
  21. 21.
    B. Cheng, S. Choi, J.E. Northrup, Z. Yang, C. Knollenberg, M. Teepe, T. Wunderer, C.L. Chua, N.M. Johnson, Enhanced vertical and lateral hole transport in high aluminum-containing AlGaN for deep ultraviolet light emitters. Appl. Phys. Lett. 102, 325 (2013)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Laboratory of Nanophotonic Functional Material and Devices, Institute of Optoelectronic Materials and TechnologySouth China Normal UniversityGuangzhouChina

Personalised recommendations