Advertisement

Phytosynthesis of silver nanoparticles; naked eye cellulose filter paper dual mechanism sensor for mercury ions and ammonia in aqueous solution

  • Muhammad Ismail
  • M. I. Khan
  • Kalsoom Akhtar
  • Jongchul Seo
  • Murad Ali Khan
  • Abdullah M. Asiri
  • Sher Bahadar KhanEmail author
Article
  • 10 Downloads

Abstract

In the present study, low cost novel cellulose filter paper based silver nanoparticles (CF-AgNPs) sensor was developed. AgNPs were synthesized via green approach using aqueous leaf extract of Convolvulus cneorum (C. cneorum). The prepared AgNPs were characterized by UV–visible spectroscopy, powder X-ray diffraction (XRD), field emission scanning electronic microscopy (FE-SEM) and energy dispersive X-ray spectroscopy (EDX). Fourier-transform infrared spectroscopy (FTIR) study revealed the role of C. cneorum metabolites in the reduction of Ag+ ions into AgNPs and their stabilization. Fast, low cost, single step and selective detection of carcinogenic heavy metals in the environmental sample is significant to take safety action. Prepared AgNPs showed a potential colorimetric detection limit for toxic mercury HgII around 5 ppb and CrVI up to 5 ppm. Addition of HgII, CrVI and ammonia showed marked blue shift in the surface plasmon resonance (SPR) peak of AgNPs. Of importance, this AgNPs probe was not only successfully applied for the detection of HgII, but also it could be used in the sensing of CrVI and aqueous ammonia. Thus, due to the distinctive localized SPR, high sensitivity, simplicity, lower detection limit at ppb level and rapid response time are the most useful for the colorimetric detection of aqueous ammonia and HgII at room temperature.

Notes

Acknowledgements

The authors are highly grateful for Center of Excellence for Advance Materials Research and Chemistry Department King Abdulaziz University, Jeddah Saudi Arabia and the Department of Chemistry Kohat University of Science and Technology, Kohat Pakistan.

Compliance with ethical standards

Conflict of interest

The author has no conflict of interest.

References

  1. 1.
    M. Moritz, M. Geszke-Moritz, The newest achievements in synthesis, immobilization and practical applications of antibacterial nanoparticles. Chem. Eng. J. 228, 596–613 (2013)CrossRefGoogle Scholar
  2. 2.
    M.M. Rahman, S.B. Khan, M. Faisal, A.M. Asiri, M.A. Tariq, Detection of aprepitant drug based on low-dimensional un-doped iron oxide nanoparticles prepared by a solution method. Electrochimica Acta 75, 164–170 (2012)CrossRefGoogle Scholar
  3. 3.
    J.L. Gardea-Torresdey, E. Gomez, J.R. Peralta-Videa, J.G. Parsons, H. Troiani, M. Jose-Yacaman, Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir 19, 1357–1361 (2003)CrossRefGoogle Scholar
  4. 4.
    D. Dhanasekaran, S. Latha, S. Saha, N. Thajuddin, A. Panneerselvam, Extracellular biosynthesis, characterisation and in-vitro antibacterial potential of silver nanoparticles using Agaricus bisporus. J. Exp. Nanosci. 8, 579–588 (2013)CrossRefGoogle Scholar
  5. 5.
    M. Ismail, S. Gul, M.A. Khan, M. Khan, Plant mediated green synthesis of anti-microbial silver nanoparticles—a review on recent trends. Rev. Nanosci. Nanotechnol. 5, 119–135 (2016)CrossRefGoogle Scholar
  6. 6.
    S. Gul, M. Ismail, M.I. Khan, S.B. Khan, A.M. Asiri, I.U. Rahman, M.A. Khan, M.A. Kamboh, Novel synthesis of silver nanoparticles using melon aqueous extract and evaluation of their feeding deterrent activity against housefly Musca domestica. Asian Pac. J. Trop. Dis. 6, 311–316 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Ismail, M.I. Khan, K. Akhtar, M.A. Khan, A.M. Asiri, S.B. Khan, Biosynthesis of silver nanoparticles: a colorimetric optical sensor for detection of hexavalent chromium and ammonia in aqueous solution. Phys. E: Low Dimens. Syst. Nanostruct. 103, 367–376 (2018)CrossRefGoogle Scholar
  8. 8.
    R.G. Munusamy, D.R. Appadurai, S. Kuppusamy, G.P. Michael, I. Savarimuthu, Ovicidal and larvicidal activities of some plant extracts against Aedes aegypti L. and Culex quinquefasciatus say (Diptera: Culicidae). Asian Pac. J. Trop. Dis. 6, 468–471 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Rajan, V. Vilas, D. Philip, Catalytic and antioxidant properties of biogenic silver nanoparticles synthesized using Areca catechu nut. J. Mol. Liq. 207, 231–236 (2015)CrossRefGoogle Scholar
  10. 10.
    B. Ajitha, Y.A.K. Reddy, P.S. Reddy, Y. Suneetha, H.-J. Jeon, C.W. Ahn, Instant biosynthesis of silver nanoparticles using Lawsonia inermis leaf extract: Innate catalytic, antimicrobial and antioxidant activities. J. Mol. Liq. 219, 474–481 (2016)CrossRefGoogle Scholar
  11. 11.
    F. Zia, N. Ghafoor, M. Iqbal, S. Mehboob, Green synthesis and characterization of silver nanoparticles using Cydonia oblong seed extract. Appl. Nanosci. 6, 1023–1029 (2016)CrossRefGoogle Scholar
  12. 12.
    M. Bilal, S. Khan, J. Ali, M. Ismail, M.I. Khan, A.M. Asiri, S.B. Khan, Biosynthesized silver supported catalysts for disinfection of Escherichia coli and organic pollutant from drinking water. J. Mol. Liq. 281, 295–306 (2019)CrossRefGoogle Scholar
  13. 13.
    V.K. Gupta, B. Sethi, R.A. Sharma, S. Agarwal, A. Bharti, Mercury selective potentiometric sensor based on low rim functionalized thiacalix [4]-arene as a cationic receptor. J. Mol. Liq. 177, 114–118 (2013)CrossRefGoogle Scholar
  14. 14.
    F.M. Rebelo, E.D. Caldas, Arsenic, lead, mercury and cadmium: Toxicity, levels in breast milk and the risks for breastfed infants. Environ. Res. 151, 671–688 (2016)CrossRefGoogle Scholar
  15. 15.
    Q.-F. Zhang, Y.-W. Li, Z.-H. Liu, Q.-L. Chen, Reproductive toxicity of inorganic mercury exposure in adult zebrafish: histological damage, oxidative stress, and alterations of sex hormone and gene expression in the hypothalamic-pituitary-gonadal axis. Aquat. Toxicol. 177, 417–424 (2016)CrossRefGoogle Scholar
  16. 16.
    H.H. Harris, I.J. Pickering, G.N. George, The chemical form of mercury in fish. Science. 301, 1203–1203 (2003)CrossRefGoogle Scholar
  17. 17.
    M. Harada, Minamata disease: methylmercury poisoning in Japan Caused by environmental pollution. Critical Rev. Toxicol. 25, 1–24 (1995)CrossRefGoogle Scholar
  18. 18.
    P. Grandjean, P. Weihe, R.F. White, F. Debes, Cognitive performance of children prenatally exposed to “safe” levels of methylmercury. Environ. Res. 77, 65–172 (1998)Google Scholar
  19. 19.
    F. Zahir, S.J. Rizwi, S.K. Haq, R.H. Khan, Low dose mercury toxicity and human health. Environ. Toxicol. Pharmacol. 20, 351–360 (2005)CrossRefGoogle Scholar
  20. 20.
    G.K. Darbha, A.K. Singh, U.S. Rai, E. Yu, H. Yu, P. Chandra, Ray, Selective detection of mercury (II) ion using nonlinear optical properties of gold nanoparticles. J. Am. Chem. Soc. 130, 8038–8043 (2008)CrossRefGoogle Scholar
  21. 21.
    M. Leermakers, W. Baeyens, P. Quevauviller, M. Horvat, Mercury in environmental samples: speciation, artifacts and validation. Trends Analyt. Chem. 24, 383–393 (2005)CrossRefGoogle Scholar
  22. 22.
    Y. Li, C. Chen, B. Li, J. Sun, J. Wang, Y. Gao, Y. Zhao, Z. Chai, Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS. J. Analyt. At. Spectrom. 21, 94–96 (2006)CrossRefGoogle Scholar
  23. 23.
    Y. Wang, F. Yang, X. Yang, Colorimetric detection of mercury (II) ion using unmodified silver nanoparticles and mercury-specific oligonucleotides. ACS Appl. Mater. Inter. 2, 339–342 (2010)CrossRefGoogle Scholar
  24. 24.
    H.P. Borase, C.D. Patil, R.B. Salunkhe, R.K. Suryawanshi, B.K. Salunke, S.V. Patil, Mercury sensing and toxicity studies of novel latex fabricated silver nanoparticles. Bioprocess Biosyst. Eng. 37, 2223–2233 (2014)CrossRefGoogle Scholar
  25. 25.
    Y. Fan, Z. Liu, J. Zhan, Synthesis of starch-stabilized Ag nanoparticles and Hg2+ recognition in aqueous media. Nanoscale Res. Lett. 4, 1230–1235 (2009)CrossRefGoogle Scholar
  26. 26.
    M.M. Rahman, S.B. Khan, A. Jamal, M. Faisal, A.M. Asiri, Highly sensitive methanol chemical sensor based on undoped silver oxide nanoparticles prepared by a solution method. Microchim. Acta 178, 99–106 (2012)CrossRefGoogle Scholar
  27. 27.
    M. Ismail, S. Gul, M.I. Khan, M.A. Khan, A.M. Asiri, S.B. Khan, Medicago polymorpha-mediated antibacterial silver nanoparticles in the reduction of methyl orange. Green Process. Synth. 8, 118–127 (2018)CrossRefGoogle Scholar
  28. 28.
    R. Sriranjani, B. Srinithya, V. Vellingiri, P. Brindha, S.P. Anthony, A. Sivasubramanian, M.S. Muthuraman, Silver nanoparticle synthesis using Clerodendrum phlomidis leaf extract and preliminary investigation of its antioxidant and anticancer activities. J. Mol. Liq. 220, 926–930 (2016)CrossRefGoogle Scholar
  29. 29.
    B. Paul, B. Bhuyan, D.D. Purkayastha, S.S. Dhar, Green synthesis of silver nanoparticles using dried biomass of Diplazium esculentum (retz.) sw. and studies of their photocatalytic and anticoagulative activities. J. Mol. Liq. 212, 813–817 (2015)CrossRefGoogle Scholar
  30. 30.
    M. Umadevi, M. Bindhu, V. Sathe, A novel synthesis of malic acid capped silver nanoparticles using Solanum lycopersicums fruit extract. J. Mater. Sci. Technol. 29, 317–322 (2013)CrossRefGoogle Scholar
  31. 31.
    A. Ahmad, S. Senapati, M.I. Khan, R. Kumar, M. Sastry, Extracellular biosynthesis of monodisperse gold nanoparticles by a novel extremophilic actinomycete, Thermomonospora sp. Langmuir. 19, 3550–3553 (2003)CrossRefGoogle Scholar
  32. 32.
    S. Hamedi, S.A. Shojaosadati, A. Mohammadi, Evaluation of the catalytic, antibacterial and anti-biofilm activities of the Convolvulus arvensis extract functionalized silver nanoparticles. J. Photochem. Photobiol. B: Biol. 167, 36–44 (2017)CrossRefGoogle Scholar
  33. 33.
    S. Smitha, K. Nissamudeen, D. Philip, K. Gopchandran, Studies on surface plasmon resonance and photoluminescence of silver nanoparticles. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 71, 186–190 (2008)CrossRefGoogle Scholar
  34. 34.
    M. Bindhu, M. Umadevi, Synthesis of monodispersed silver nanoparticles using Hibiscus cannabinus leaf extract and its antimicrobial activity. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 101, 184–190 (2013)CrossRefGoogle Scholar
  35. 35.
    A. Henglein, Physicochemical properties of small metal particles in solution:“ microelectrode” reactions, chemisorption, composite metal particles, and the atom-to-metal transition. J. Phys. Chem. 97, 5457–5471 (1993)CrossRefGoogle Scholar
  36. 36.
    J. Huang, L. Lin, Q. Li, D. Sun, Y. Wang, Y. Lu, N. He, K. Yang, X. Yang, H. Wang, Continuous-flow biosynthesis of silver nanoparticles by lixivium of sundried Cinnamomum camphora leaf in tubular microreactors. Ind. Eng. Chem. Res. 47, 6081–6090 (2008)CrossRefGoogle Scholar
  37. 37.
    S. Sandeep, A.S. Santhosh, N.K. Swamy, G.S. Suresh, J.S. Melo, P. Mallu, Biosynthesis of silver nanoparticles using Convolvulus pluricaulis leaf extract and assessment of their catalytic, electrocatalytic and phenol remediation properties. Adv. Mater. Lett. 7, 383–389 (2016)CrossRefGoogle Scholar
  38. 38.
    D. Philip, C. Unni, Extracellular biosynthesis of gold and silver nanoparticles using Krishna tulsi (Ocimum sanctum) leaf. Phys. E: Low Dimens. Syst. Nanostruct. 43, 1318–1322 (2011)CrossRefGoogle Scholar
  39. 39.
    S. Haider, T. Kamal, S.B. Khan, M. Omer, A. Haider, F.U. Khan, A.M. Asiri, Natural polymers supported copper nanoparticles for pollutants degradation. Appl. Surf. Sci. 387, 1154–1161 (2016)CrossRefGoogle Scholar
  40. 40.
    S.A. Khan, M. Ismail, Y. Anwar, A. Farooq, O. Al Johny Bassam, K. Akhtar, A. Shah Zafar, M. Nadeem, A. Raza Mian, A.M. Asiri, S.B. Khan, A highly efficient and multifunctional biomass supporting Ag, Ni, and Cu nanoparticles through wetness impregnation for environmental remediation. Green Process. Synth. 8, 309–319 (2018)CrossRefGoogle Scholar
  41. 41.
    M. Ismail, M. Khan, S.A. Khan, M. Qayum, M.A. Khan, Y. Anwar, K. Akhtar, A.M. Asiri, S.B. Khan, Green synthesis of antibacterial bimetallic Ag–Cu nanoparticles for catalytic reduction of persistent organic pollutants. J. Mater. Sci.: Mater. Electron. 29, 20840–20855 (2018)Google Scholar
  42. 42.
    E.S. Janga, B. Sher Khan, J. Seo, H. Yoon Nama, J. Won Choia, K. Akhtard, H. Hana, Synthesis and characterization of novel UV-curable polyurethane–clay nanohybrid: influence of organically modified layered silicates on the properties of polyurethane. Prog. Org. Coatings. 71, 36–42 (2011)CrossRefGoogle Scholar
  43. 43.
    H. Bai, Z. Zhang, Y. Guo, G. Yang, Biosynthesis of cadmium sulfide nanoparticles by photosynthetic bacteria Rhodopseudomonas palustris. Colloids and Surfaces B: Biointerfaces. 70, 142–146 (2009)CrossRefGoogle Scholar
  44. 44.
    M. Ismail, S. Gul, M.I. Khan, M.A. Khan, A.M. Asiri, S.B. Khan, Green synthesis of zerovalent copper nanoparticles for efficient reduction of toxic azo dyes congo red and methyl orange. Green Process. Synth. 8, 135–143 (2018)CrossRefGoogle Scholar
  45. 45.
    N.S. Shaligram, M. Bule, R. Bhambure, R.S. Singhal, S.K. Singh, G. Szakacs, A. Pandey, Biosynthesis of silver nanoparticles using aqueous extract from the compactin producing fungal strain. Process Biochem. 44, 939–943 (2009)CrossRefGoogle Scholar
  46. 46.
    A.D. Dwivedi, K. Gopal, Biosynthesis of silver and gold nanoparticles using Chenopodium album leaf extract. Colloids Surf. A: Physicochem. Eng. Asp. 369, 27–33 (2010)CrossRefGoogle Scholar
  47. 47.
    N. Jain, D. Pathak, P. Mishra, S. Jain, Syntheses and antibacterial studies of some 2-[5-(Aryl)-[1, 3, 4] oxadiazole-2-ylsulfanyl] alkanoic Acids. J. Iran. Chem. Soc. 6, 77–81 (2009)CrossRefGoogle Scholar
  48. 48.
    Z. Ahmad Rehan, L. Gzara, S. Bahadar Khan, K.A. Alamry, M. El-Shahawi, M.H. Albeirutty, A. Figoli, E. Drioli, A.M. Asiri, Synthesis and characterization of silver nanoparticles-filled polyethersulfone membranes for antibacterial and anti-biofouling application. Recent Pat. Nanotechnol. 10, 231–251 (2016)CrossRefGoogle Scholar
  49. 49.
    M.M. Rahman, A. Jamal, S.B. Khan, M. Faisal, Fabrication of chloroform sensor based on hydrothermally prepared low-dimensional β-Fe2O3 nanoparticles. Superlattices Microstruct. 50, 369–376 (2011)CrossRefGoogle Scholar
  50. 50.
    B.A. Bello, S.A. Khan, J.A. Khan, F.Q. Syed, M.B. Mirza, L. Shah, S.B. Khan, Anticancer, antibacterial and pollutant degradation potential of silver nanoparticles from Hyphaene thebaica. Biochem. Biophys. Res. Commun. 490, 889–894 (2017)CrossRefGoogle Scholar
  51. 51.
    M. Ismail, M.I. Khan, S.B. Khan, M.A. Khan, K. Akhtar, A.M. Asiri, Green synthesis of plant supported CuAg and CuNi bimetallic nanoparticles in the reduction of nitrophenols and organic dyes for water treatment. J. Mol. Liq. 260, 78–91 (2018)CrossRefGoogle Scholar
  52. 52.
    M. Ismail, M.I. Khan, S.B. Khan, K. Akhtar, M.A. Khan, A.M. Asiri, Catalytic reduction of picric acid, nitrophenols and organic azo dyes via green synthesized plant supported Ag nanoparticles. J. Mol. Liq. 268, 87–101 (2018)CrossRefGoogle Scholar
  53. 53.
    T. Kamal, I. Ahmad, S.B. Khan, A.M. Asiri, Synthesis and catalytic properties of silver nanoparticles supported on porous cellulose acetate sheets and wet-spun fibers. Carbohydr. Polym. 157, 294–302 (2017)CrossRefGoogle Scholar
  54. 54.
    S.S. Ravi, L.R. Christena, N. SaiSubramanian, S.P. Anthony, Green synthesized silver nanoparticles for selective colorimetric sensing of Hg 2 + in aqueous solution at wide pH range. Analyst. 138, 4370–4377 (2013)CrossRefGoogle Scholar
  55. 55.
    P.R. Aranda, R.A. Gil, S. Moyano, I.E. De Vito, L.D. Martinez, Cloud point extraction of mercury with PONPE 7.5 prior to its determination in biological samples by ETAAS. Talanta. 75, 307–311 (2008)CrossRefGoogle Scholar
  56. 56.
    D.W. Boening, Ecological effects, transport, and fate of mercury: a general review. Chemosphere. 40, 1335–1351 (2000)CrossRefGoogle Scholar
  57. 57.
    A. Shah, T. Kazi, J. Baig, H. Afridi, G. Kandhro, M. Arain, N. Kolachi, S. Wadhwa, Total mercury determination in different tissues of broiler chicken by using cloud point extraction and cold vapor atomic absorption spectrometry. Food Chem. Toxicol. 48, 65–69 (2010)CrossRefGoogle Scholar
  58. 58.
    G. WHO, Guidelines for drinking-water quality. World Health Organization. 216, 303–304 (2011)Google Scholar
  59. 59.
    B.C. Mondal, D. Das, A.K. Das, Application of a new resin functionalised with 6-mercaptopurine for mercury and silver determination in environmental samples by atomic absorption spectrometry. Anal. Chim. Acta 450, 223–230 (2001)CrossRefGoogle Scholar
  60. 60.
    M. Vigeh, E. Nishioka, K. Ohtani, Y. Omori, T. Matsukawa, S. Koda, K. Yokoyama, Prenatal mercury exposure and birth weight. Reproductive Toxicol. 76, 78–83 (2018)CrossRefGoogle Scholar
  61. 61.
    F. Kho, G.H. Pham, Absorption kinetics of mercury (II) chloride into water and aqueous sodium chloride solution. Fuel Process. Technol. 174, 78–87 (2018)CrossRefGoogle Scholar
  62. 62.
    P. Jarujamrus, M. Amatatongchai, A. Thima, T. Khongrangdee, C. Mongkontong, Selective colorimetric sensors based on the monitoring of an unmodified silver nanoparticles (AgNPs) reduction for a simple and rapid determination of mercury. Spectrochim. Acta A: Mol. Biomol. Spectrosc. 142, 86–93 (2015)CrossRefGoogle Scholar
  63. 63.
    T. Morris, H. Copeland, E. McLinden, S. Wilson, G. Szulczewski, The effects of mercury adsorption on the optical response of size-selected gold and silver nanoparticles. Langmuir. 18, 7261–7264 (2002)CrossRefGoogle Scholar
  64. 64.
    P. Rameshkumar, N.M. Huang, L.S. Wei, Visual and spectrophotometric determination of mercury (II) using silver nanoparticles modified with graphene oxide. Microchim. Acta 183, 597–603 (2016)CrossRefGoogle Scholar
  65. 65.
    P. Rameshkumar, S. Manivannan, R. Ramaraj, Silver nanoparticles deposited on amine-functionalized silica spheres and their amalgamation-based spectral and colorimetric detection of Hg (II) ions. J. Nanoparticle Res. 15, 1639 (2013)CrossRefGoogle Scholar
  66. 66.
    K. Roy, C.K. Sarkar, C.K. Ghosh, Rapid colorimetric detection of Hg2+ ion by green silver nanoparticles synthesized using Dahlia pinnata leaf extract. Green Process. Synth. 4, 455–461 (2015)Google Scholar
  67. 67.
    T. Del Giacco, R. Germani, F. Purgatorio, M. Tiecco, Role of anionic micelles in self-assembling of fluorescent acridinium-based chemosensors for the detection of mercury (II) ions. J. Photochem. Photobiol. A: Chem. 345, 74–79 (2017)CrossRefGoogle Scholar
  68. 68.
    A.a.M. Noor, P. Rameshkumar, N.M. Huang, L.S. Wei, Visual and spectrophotometric determination of mercury(II) using silver nanoparticles modified with graphene oxide. Microchim. Acta. 183, 597–603 (2016)CrossRefGoogle Scholar
  69. 69.
    G.-L. Wang, X.-Y. Zhu, H.-J. Jiao, Y.-M. Dong, Z.-J. Li, Ultrasensitive and dual functional colorimetric sensors for mercury (II) ions and hydrogen peroxide based on catalytic reduction property of silver nanoparticles. Biosens. Bioelectron. 31, 337–342 (2012)CrossRefGoogle Scholar
  70. 70.
    W.H. Organization, Guidelines for drinking-water quality—fourth edition incorporating the first addendum (Geneva, Switzerland., 2017)Google Scholar
  71. 71.
    D.C. Rice, The US EPA reference dose for methylmercury: sources of uncertainty. Environ. Res. 95, 406–413 (2004)CrossRefGoogle Scholar
  72. 72.
    W. Yang, A. Zhu, J. Zhang, X. Xin, X. Zhang, Evaluation of a backward Lagrangian stochastic model for determining surface ammonia emissions. Agric. For. Meteorol. 234–235, 196–202 (2017)CrossRefGoogle Scholar
  73. 73.
    T. Yamada, S. Uchiyama, Y. Inaba, N. Kunugita, H. Nakagome, H. Seto, A diffusive sampling device for measurement of ammonia in air. Atmos. Environ. 54, 629–633 (2012)CrossRefGoogle Scholar
  74. 74.
    S.T. Dubas, V. Pimpan, Green synthesis of silver nanoparticles for ammonia sensing. Talanta. 76, 29–33 (2008)CrossRefGoogle Scholar
  75. 75.
    S. Pandey, G.K. Goswami, K.K. Nanda, Green synthesis of biopolymer–silver nanoparticle nanocomposite: an optical sensor for ammonia detection. Int. J. Biol. Macromol. 51, 583–589 (2012)CrossRefGoogle Scholar
  76. 76.
    H. Manap, M.R. Mohamed, M.S. Najib, Lower detection limit enhancement for low concentration ammonia measurement. Sens. Actuators B: Chem. 243, 882–887 (2017)CrossRefGoogle Scholar
  77. 77.
    K.W. Jennette, Chromate metabolism in liver microsomes. Biol. Trace Elem. Res. 1, 55–62 (1979)CrossRefGoogle Scholar
  78. 78.
    S. De Flora, Threshold mechanisms and site specificity in chromium (VI) carcinogenesis. Carcinogenesis. 21, 533–541 (2000)CrossRefGoogle Scholar
  79. 79.
    F. Depault, M. Cojocaru, F. Fortin, S. Chakrabarti, N. Lemieux, Genotoxic effects of chromium (VI) and cadmium (II) in human blood lymphocytes using the electron microscopy in situ end-labeling (EM-ISEL) assay. Toxicol. In Vitro. 20, 513–518 (2006)CrossRefGoogle Scholar
  80. 80.
    H. Schulz, M. Baranska, Identification and quantification of valuable plant substances by IR and Raman spectroscopy. Vib. Spectrosc. 43, 13–25 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Muhammad Ismail
    • 1
  • M. I. Khan
    • 1
  • Kalsoom Akhtar
    • 2
  • Jongchul Seo
    • 3
  • Murad Ali Khan
    • 1
  • Abdullah M. Asiri
    • 2
    • 4
  • Sher Bahadar Khan
    • 2
    • 4
    Email author
  1. 1.Department of ChemistryKohat University of Science & TechnologyKohatPakistan
  2. 2.Chemistry Department, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia
  3. 3.Department of PackagingYonsei UniversityWonjuSouth Korea
  4. 4.Center of Excellence for Advanced Materials Research, Faculty of ScienceKing Abdulaziz UniversityJeddahSaudi Arabia

Personalised recommendations