Advertisement

Hierarchical porous biomass carbon derived from cypress coats for high energy supercapacitors

  • Lulu Qiang
  • Zhongai HuEmail author
  • Zhimin Li
  • Yuying Yang
  • Xiaotong Wang
  • Yi Zhou
  • Xinyuan Zhang
  • Wenbin Wang
  • Qian Wang
Article
  • 34 Downloads

Abstract

In the present work, we report a simple two-step process to fabricate hierarchical porous carbon from biomass. The so-called two-step refers to hydrothermal carbonization of cypress coats followed by activation with KOH. The morphology and porous parameters of the resulting porous carbon can be controlled by adjusting KOH/carbon mass ratio during activating stage. The optimal sample (SHPC-2) has a hierarchically porous structure containing micropores and meso-/macropores, high specific surface areas (1325.9 m2 g− 1) with appropriate pore size and hydrophilous surface properties due to rich nitrogen and oxygen co-doping. The electrochemical measurements show the as-prepared SHPC-2 exhibits a high specific capacitance (345 and 330 F g− 1 at 1.0 A g− 1) and better rate capability (75.4% and 87.8% capacitance retention at 50 A g− 1) in 1 M H2SO4 and 6 M KOH, respectively. Furthermore, the assembled symmetric supercapacitor based on SHPC-2 and filled with 1 M Na2SO4 electrolyte delivers an outstanding energy storage performance (energy density of 30.5 W h kg− 1 at power density 900 W kg− 1) with good cycling stability (86.2% retention after 10000 cycles at 5 A g− 1). These results indicate that the eco-friendly carbon materials derived from biomass have a huge potential in the applications of high-performance electrode materials for supercapacitors.

Notes

Acknowledgements

The authors gratefully acknowledge the financial support offered by the National Natural Science Foundation of China (20963009, 21163017, 21563027, and 21773187).

References

  1. 1.
    W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 7, 379–386 (2014)CrossRefGoogle Scholar
  2. 2.
    N. Guo, M. Li, X. Sun, F. Wang, R. Yang, Enzymatic hydrolysis lignin derived hierarchical porous carbon for supercapacitors in ionic liquids with high power and energy densities. Green Chem. 19, 2595–2602 (2017)CrossRefGoogle Scholar
  3. 3.
    R.C. Ambare, S.R. Bharadwaj, B.J. Lokhande, Non-aqueous route spray pyrolyzed Ru:Co3O4 thin electrodes for supercapacitor application. Appl. Surf. Sci. 349, 887–896 (2015)CrossRefGoogle Scholar
  4. 4.
    C. Wang, D. Wu, H. Wang, Z. Gao, F. Xu, K. Jiang, A green and scalable route to yield porous carbon sheets from biomass for supercapacitors with high capacity. J. Mater. Chem. A 6, 1244–1254 (2018)CrossRefGoogle Scholar
  5. 5.
    S. Song, F. Ma, G. Wu, D. Ma, W. Geng, J. Wan, Facile self-templating large scale preparation of biomass-derived 3D hierarchical porous carbon for advanced supercapacitors. J. Mater. Chem. A 3, 18154–18162 (2015)CrossRefGoogle Scholar
  6. 6.
    B.J. Lokhande, R.C. Ambare, R.S. Mane, S.R. Bharadwaj, Concentration-dependent electrochemical supercapacitive performance of Fe2O3. Curr. Appl. Phys. 13, 985–989 (2013)CrossRefGoogle Scholar
  7. 7.
    J. Deng, T. Xiong, F. Xu, M. Li, C. Han, Y. Gong, H. Wang, Y. Wang, Inspired by bread leavening: one-pot synthesis of hierarchically porous carbon for supercapacitors. Green Chem. 17, 4053–4060 (2015)CrossRefGoogle Scholar
  8. 8.
    R.C. Ambare, P. Shinde, U.T. Nakate, B.J. Lokhande, R.S. Mane, Sprayed bismuth oxide interconnected nanoplate supercapacitor electrode materials. Appl. Surf. Sci. 453, 214–219 (2018)CrossRefGoogle Scholar
  9. 9.
    Z. Yu, L. Tetard, L. Zhai, J. Thomas, Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ. Sci. 8, 702–730 (2015)CrossRefGoogle Scholar
  10. 10.
    G.A. Snook, P. Kao, A.S. Best, Conducting-polymer-based supercapacitor devices and electrodes. J. Power Sources 196, 1–12 (2011)CrossRefGoogle Scholar
  11. 11.
    R.C. Ambare, B.J. Lokhande, Ru incorporation enhanced electrochemical performance of spray deposited Mn: Co3O4 nano-composite: electrochemical approach. J. Anal. Appl. Pyrol. 132, 245–253 (2018)CrossRefGoogle Scholar
  12. 12.
    B.J. Lokhande, R.C. Ambare, S.R. Bharadwaj, Thermal optimization and supercapacitive application of electrodeposited Fe2O3 thin films. Measurement 47, 427–432 (2014)CrossRefGoogle Scholar
  13. 13.
    L. Hao, X. Li, L. Zhi, Carbonaceous electrode materials for supercapacitors. Adv. Mater. 25, 3899–3904 (2013)CrossRefGoogle Scholar
  14. 14.
    X. Li, J. Rong, B. Wei, Electrochemical behavior of single walled carbon nanotube supercapacitors under compressive stress. ACS Nano 4, 6039–6049 (2010)CrossRefGoogle Scholar
  15. 15.
    Y. Ren, Q. Xu, J. Zhang, H. Yang, B. Wang, D. Yang, J. Hu, Z. Liu, Functionalization of biomass carbonaceous aerogels: selective preparation of MnO2@CA composites for supercapacitors. ACS Appl. Mater. Interfaces 6, 9689–9697 (2014)CrossRefGoogle Scholar
  16. 16.
    L. Zhang, R. Zhou, X. Zhao, Graphene-based materials as supercapacitor electrodes. J. Mater. Chem. 20, 5983–5992 (2010)CrossRefGoogle Scholar
  17. 17.
    W. Liu, H. Jiang, H. Yu, Development of biochar-based functional materials: toward a sustainable platform carbon material. Chem. Rev. 115, 12251–12285 (2015)CrossRefGoogle Scholar
  18. 18.
    Y. Gong, D. Li, C. Luo, Q. Fu, C. Pan, Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors. Green Chem. 19, 4132–4140 (2017)CrossRefGoogle Scholar
  19. 19.
    A. Ahmadpour, D.D. Do, The preparation of active carbons from coal by chemical and physical activation. Carbon 34, 471–479 (1996)CrossRefGoogle Scholar
  20. 20.
    C. Wang, T. Liu, N. Nori-based, S. O, Cl co-doped carbon materials by chemical activation of ZnCl2 for supercapacitor. J. Alloy. Compd. 696, 42–50 (2017)CrossRefGoogle Scholar
  21. 21.
    L. Xie, G. Sun, F. Su, X. Guo, Q. Kong, X. Li, X. Huang, L. Wan, W. Song, K. Li, C. Lv, C.-M. Chen, Hierarchical porous carbon microtubes derived from willow catkins for supercapacitor application. J. Mater. Chem. A 4, 1637–1646 (2016)CrossRefGoogle Scholar
  22. 22.
    Y. An, Z. Li, Y. Yang, B. Guo, Z. Zhang, H. Wu, Z. Hu, Synthesis of hierarchically porous nitrogen-doped carbon nanosheets from agaric for high-performance symmetric supercapacitors. Adv. Mater. Interfaces 4, 1700033 (2017)CrossRefGoogle Scholar
  23. 23.
    X. Wei, Y. Li, S. Gao, Biomass-derived interconnected carbon nanoring electrochemical capacitors with high performance in both strongly acidic and alkaline electrolytes. J. Mater. Chem. A 5, 181–188 (2017)CrossRefGoogle Scholar
  24. 24.
    Y. Lv, F. Zhang, Y. Dou, Y. Zhai, J. Wang, H. Liu, Y. Xia, B. Tu, D. Zhao, A comprehensive study on KOH activation of ordered mesoporous carbons and their supercapacitor application. J. Mater. Chem. 22, 93–99 (2012)CrossRefGoogle Scholar
  25. 25.
    Y. Liu, B. Huang, X. Lin, Z. Xie, Biomass-derived hierarchical porous carbons: boosting the energy density of supercapacitors via an ionothermal approach. J. Mater. Chem. A 5, 13009–13018 (2017)CrossRefGoogle Scholar
  26. 26.
    A. Jain, R. Balasubramanian, M.P. Srinivasan, Hydrothermal conversion of biomass waste to activated carbon with high porosity: a review. Chem. Eng. J. 283, 789–805 (2016)CrossRefGoogle Scholar
  27. 27.
    Q. Liang, L. Ye, Z.-H. Huang, Q. Xu, Y. Bai, F. Kang, Q.-H. Yang, A honeycomb-like porous carbon derived from pomelo peel for use in high-performance supercapacitors. Nanoscale 6, 13831–13837 (2014)CrossRefGoogle Scholar
  28. 28.
    Y. Li, G. Wang, T. Wei, Z. Fan, P. Yan, Nitrogen and sulfur co-doped porous carbon nanosheets derived from willow catkin for supercapacitors. Nano Energy 19, 165–175 (2016)CrossRefGoogle Scholar
  29. 29.
    J. Xia, N. Zhang, S. Chong, D. Li, Y. Chen, C. Sun, Three-dimensional porous graphene-like sheets synthesized from biocarbon via low-temperature graphitization for supercapacitor. Green Chem. 20, 694–700 (2018)CrossRefGoogle Scholar
  30. 30.
    J. Wang, S. Kaskel, KOH activation of carbon-based materials for energy storage. J. Mater. Chem. 22, 23710 (2012)CrossRefGoogle Scholar
  31. 31.
    K. Sun, S. Yu, Z. Hu, Z. Li, G. Lei, Q. Xiao, Y. Ding, Oxygen-containing hierarchically porous carbon materials derived from wild jujube pit for high-performance supercapacitor. Electrochim. Acta 231, 417–428 (2017)CrossRefGoogle Scholar
  32. 32.
    Z.-S. Wu, Y. Sun, Y.-Z. Tan, S. Yang, X. Feng, K. Mullen, Three-dimensional graphene-based macro- and mesoporous frameworks for high-performance electrochemical capacitive energy storage. J. Am. Chem. Soc. 134, 19532–19535 (2012)CrossRefGoogle Scholar
  33. 33.
    Y.-Q. Zhao, M. Lu, P.-Y. Tao, Y.-J. Zhang, X.-T. Gong, Z. Yang, G.-Q. Zhang, H.-L. Li, Hierarchically porous and heteroatom doped carbon derived from tobacco rods for supercapacitors. J. Power Sources 307, 391–400 (2016)CrossRefGoogle Scholar
  34. 34.
    C. Yuan, X. Liu, M. Jia, Z. Luo, J. Yao, Facile preparation of N- and O- doped hollow carbon spheres derived from poly (o-phenylenediamine) for supercapacitors. J. Mater. Chem. A 3, 3409–3415 (2015)CrossRefGoogle Scholar
  35. 35.
    S. Ratso, I. Kruusenberg, M. Vikkisk, U. Joost, E. Shulga, I. Kink, T. Kallio, K. Tammeveski, Highly active nitrogen-doped few-layer graphene/carbon nanotube composite electrocatalyst for oxygen reduction reaction in alkaline media. Carbon 73, 361–370 (2014)CrossRefGoogle Scholar
  36. 36.
    T. Wei, X. Wei, Y. Gao, H. Li, Large scale production of biomass-derived nitrogen-doped porous carbon materials for supercapacitors. Electrochim. Acta 169, 186–194 (2015)CrossRefGoogle Scholar
  37. 37.
    S. Gao, K. Geng, H. Liu, X. Wei, M. Zhang, P. Wang, J. Wang, Transforming organic-rich amaranthus waste into nitrogen-doped carbon with superior performance of the oxygen reduction reaction. Energy Environ. Sci. 8, 221–229 (2015)CrossRefGoogle Scholar
  38. 38.
    J. Yan, Q. Wang, T. Wei, L. Jiang, M. Zhang, X. Jing, Z. Fan, Template-assisted low temperature synthesis of functionalized graphene for ultrahigh volumetric performance supercapacitors. ACS Nano 8, 4720–4729 (2014)CrossRefGoogle Scholar
  39. 39.
    M. Yang, Z. Zhou, Recent breakthroughs in supercapacitors boosted by nitrogen-rich porous carbon materials. Adv. Sci. 4, 1600408 (2017)CrossRefGoogle Scholar
  40. 40.
    K. Zou, Y. Deng, J. Chen, Y. Qian, Y. Yang, Y. Li, G. Chen, Hierarchically porous nitrogen-doped carbon derived from the activation of agriculture waste by potassium hydroxide and urea for high-performance supercapacitors. J. Power Sources 378, 579–588 (2018)CrossRefGoogle Scholar
  41. 41.
    H. Feng, H. Hu, H. Dong, Y. Xiao, Y. Cai, B. Lei, Y. Liu, M. Zheng, Hierarchical structured carbon derived from bagasse wastes: A simple and efficient synthesis route and its improved electrochemical properties for high-performance supercapacitors. J. Power Sources 302, 164–173 (2016)CrossRefGoogle Scholar
  42. 42.
    T. Ouyang, K. Cheng, F. Yang, L. Zhou, K. Zhu, K. Ye, G. Wang, D. Cao, From biomass with irregular structures to 1D carbon nanobelts: A stripping and cutting strategy to fabricate high performance supercapacitor materials. J. Mater. Chem. A 5, 14551–14561 (2017)CrossRefGoogle Scholar
  43. 43.
    X.-L. Su, J.-R. Chen, G.-P. Zheng, J.-H. Yang, X.-X. Guan, P. Liu, X.-C. Zheng, Three-dimensional porous activated carbon derived from loofah sponge biomass for supercapacitor applications. Appl. Surf. Sci. 436, 327–336 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Key Laboratory of Eco-Environment-Related Polymer Materials of Ministry of Education, Key Laboratory of Polymer Materials of Gansu Province, College of Chemistry and Chemical EngineeringNorthwest Normal UniversityLanzhouChina

Personalised recommendations