Advertisement

Optical properties of PVT grown bromoaluminium phthalocyanine nanostructures using UV–visible–NIR spectroscopy

  • Sobhenaz RiyaziEmail author
  • M. E. Azim Araghi
  • Salar Pourteimoor
Article
  • 19 Downloads

Abstract

In this paper, we have studied the optical properties of bromoaluminium phthalocyanine (BrAlPc) nanostructures prepared by physical vapor phase transport (PVT) using UV–visible–NIR spectroscopy. Field emission scanning electron microscopy (FESEM) images show that different nanostructures namely nanocorals, nanorods and nanothistles have been obtained at varied source-substrate distances. By analyzing the spectrophotometric measurements of the absorbance, transmittance and reflectance spectra in the range of 300–2500 nm the optical characteristics, such as the optical absorption, Urbach energy, extinction coefficient, refractive index, and dielectric characteristics as a function of incident photon energy have been evaluated. We have found that the values of fundamental optical band gap and the energy of trap levels of all nanostructures have no remarkable changes. It is seen that the Urbach energy of BrAlPc nanorods is higher than nanocorals and nanothistles indicating higher structural disorder. Moreover, the occurrence of doublet in the Q-band region reveals that the BrAlPc nanocorals and nanorods are in \(\alpha\)-phase while the BrAlPc nanothistles is in \(\beta\)-phase. Moreover, different dispersion and absorption parameters have been estimated for different BrAlPc nanostructures. The obtained optical results for novel grown BrAlPc by PVT method may be of interest for practical applications.

Notes

Acknowledgements

We are grateful to Dr. Hamid Haratizadeh at Shohrood University of Technology for valuable technical assistance and expertise. We also wish to thank Dr. Elham haratian nezhad for carrying out the spectroscopic recordings.

References

  1. 1.
    C.G. Claessens, W.J. Blau, M. Cook, M. Hanack, R.J. Nolte, T. Torres, D. WoÈhrle, Phthalocyanines and phthalocyanine analogues: the quest for applicable optical properties. Monatsh für Chem/Chem Mon 132, 3–11 (2001)CrossRefGoogle Scholar
  2. 2.
    F. Ghani, J. Kristen, H. Riegler, Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J Chem Eng Data 57, 439–449 (2012)CrossRefGoogle Scholar
  3. 3.
    M. Zhang, C. Shao, Z. Guo, Z. Zhang, J. Mu, T. Cao, Y. Liu, Hierarchical nanostructures of copper (II) phthalocyanine on electrospun TiO2 nanofibers: controllable solvothermal-fabrication and enhanced visible photocatalytic properties. ACS Appl Mater Interfaces 3, 369–377 (2011)CrossRefGoogle Scholar
  4. 4.
    S. Karan, B. Mallik, Effects of annealing on the morphology and optical property of copper (II) phthalocyanine nanostructured thin films. Solid State Commun. 143, 289–294 (2007)CrossRefGoogle Scholar
  5. 5.
    Y. Kim, T.-Y. Yang, N. Jeon, J. Im, S. Jang, T. Shin, H.-W. Shin, S. Kim, E. Lee, J. Noh, Engineering interface structures between lead halide perovskite and copper phthalocyanine for efficient and stable perovskite solar cells. Energy Environ. Sci. 10, 2109–2116 (2017)CrossRefGoogle Scholar
  6. 6.
    G. de la Torre, G. Bottari, T. Torres, Phthalocyanines and subphthalocyanines: perfect partners for fullerenes and carbon nanotubes in molecular photovoltaics. Adv Energy Mater 7, 1601700 (2017)CrossRefGoogle Scholar
  7. 7.
    A.J. Pearson, T. Plint, S.T. Jones, B.H. Lessard, D. Credgington, T.P. Bender, N.C. Greenham, Silicon phthalocyanines as dopant red emitters for efficient solution processed OLEDs. J Mater Chem C 5, 12688–12698 (2017)CrossRefGoogle Scholar
  8. 8.
    O.A. Melville, B.H. Lessard, T.P. Bender, Phthalocyanine-based organic thin-film transistors: a review of recent advances. ACS Appl Mater Interfaces 7, 13105–13118 (2015)CrossRefGoogle Scholar
  9. 9.
    S. Pourteimoor, H. Haratizadeh, Performance of a fabricated nanocomposite-based capacitive gas sensor at room temperature. J. Mater. Sci. 28, 18529–18534 (2017)Google Scholar
  10. 10.
    O.L. Kaliya, E.A. Lukyanets, G.N. Vorozhtsov, Catalysis and photocatalysis by phthalocyanines for technology, ecology and medicine. J. Porphyrins Phthalocyanines 3, 592–610 (1999)CrossRefGoogle Scholar
  11. 11.
    T. Nyokong, I. Gledhill, March. The use of phthalocyanines in cancer therapy. In AIP Conference Proceedings, 1, pp. 49–52, (2013)Google Scholar
  12. 12.
    P. Gregory. High-technology applications of organic colorants. (Springer Science & Business Media, Berlin, 2012). p. 759Google Scholar
  13. 13.
    F. Wang, J. Wang, Z. Chen, X. Liu, L. Xiao, L. Jiang, B. Qu, S. Wang, Q. Gong, In situ synthesis of poly (copper phthalocyanine) nanostructures for organic nanodevices. Chem. Lett. 43, 1040–1042 (2014)CrossRefGoogle Scholar
  14. 14.
    W. Tong, A. Djurišić, M. Xie, A. Ng, K. Cheung, W. Chan, Y. Leung, H. Lin, S. Gwo, Metal phthalocyanine nanoribbons and nanowires. J. Phys. Chem. B 110, 17406–17413 (2006)CrossRefGoogle Scholar
  15. 15.
    S.M. Yoon, S.J. Lou, S. Loser, J. Smith, L.X. Chen, A. Facchetti, T. Marks, Fluorinated copper phthalocyanine nanowires for enhancing interfacial electron transport in organic solar cells. Nano Lett 12, 6315–6321 (2012)CrossRefGoogle Scholar
  16. 16.
    X. Wang, W. Wu, H. Ju, T. Zou, Z. Qiao, H. Gong, H. Wang, Experimental and theoretical studies of the structure and optical properties of nickel phthalocyanine nanowires. Mater Res Express 3, 125002 (2016)CrossRefGoogle Scholar
  17. 17.
    İ Özçeşmeci, I. Sorar, A. Gül, Optical studies on phthalocyanines substituted with phenylazonaphthoxy groups. Phil. Mag. 96, 2986–2999 (2016)CrossRefGoogle Scholar
  18. 18.
    M. El-Nahass, H. Soliman, B. Khalifa, I. Soliman, Structural and optical properties of nanocrystalline aluminum phthalocyanine chloride thin films. Mater. Sci. Semicond. Process. 38, 177–183 (2015)CrossRefGoogle Scholar
  19. 19.
    M. El-Nahass, A. Farag, A. Atta, Influence of heat treatment and gamma-rays irradiation on the structural and optical characterizations of nano-crystalline cobalt phthalocyanine thin films. Synth. Met. 159, 589–594 (2009)CrossRefGoogle Scholar
  20. 20.
    M. Sardela, Practical Materials Characterization (Springer, Berlin, 2014). p. 43Google Scholar
  21. 21.
    H. Isago, Optical spectra of phthalocyanines and related compounds (Springer, Berlin, 2015). p. 99CrossRefGoogle Scholar
  22. 22.
    M.E. Azim-Araghi, S. Riyazi, S. Pourteimoor, Effects of post-deposition annealing on morphology and optical properties of electron beam evaporated Bromoaluminium phthalocyanine thin films. J. Mater. Sci. 24, 3862–3867 (2013)Google Scholar
  23. 23.
    S. Pourteimoor, H. Haratizadeh, M.E.A. Araghi, M. Ghezellou, Novel nanostructures of bromoaluminum phthalocyanine grown by physical vapor phase transport. J. Mater. Sci. 29, 16032–16040 (2018)Google Scholar
  24. 24.
    K. Kadish, K. Smith, R. Guilard, The porphyrin handbook, phthalocyanine: properties and materials, vol. 17, (Academic Press Inc, New York, 2003). pp. 18–20Google Scholar
  25. 25.
    M. Novotný, J. Šebera, A. Bensalah-Ledoux, S. Guy, J. Bulíř, P. Fitl, J. Vlček, D. Zákutná, E. Marešová, P. Hubík, The growth of zinc phthalocyanine thin films by pulsed laser deposition. J. Mater. Res. 31, 163–172 (2016)CrossRefGoogle Scholar
  26. 26.
    A. Zawadzka, A. Karakas, P. Płóciennik, J. Szatkowski, Z. Łukasiak, A. Kapceoglu, Y. Ceylan, B. Sahraoui, Optical and structural characterization of thin films containing metallophthalocyanine chlorides. Dyes Pigm. 112, 116–126 (2015)CrossRefGoogle Scholar
  27. 27.
    X. Ji, T. Zou, H. Gong, Q. Wu, Z. Qiao, W. Wu, H. Wang, Cobalt phthalocyanine nanowires: growth, crystal structure, and optical properties. Cryst. Res. Technol. 51, 154–159 (2016)CrossRefGoogle Scholar
  28. 28.
    M. Novotny, J. Bulir, A. Bensalah-Ledoux, S. Guy, P. Fitl, M. Vrnata, J. Lancok, B. Moine, Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition. Appl. Phys. A 117, 377–381 (2014)CrossRefGoogle Scholar
  29. 29.
    P. Singh, N. Ravindra, Optical properties of metal phthalocyanines. J Mater Sci 45, 4013–4020 (2010)CrossRefGoogle Scholar
  30. 30.
    F. Aziz, M. Sayyad, Z. Ahmad, K. Sulaiman, M. Muhammad, K.S. Karimov, Spectroscopic and microscopic studies of thermally treated vanadyl 2, 9, 16, 23-tetraphenoxy-29H, 31H-phthalocyanine thin films, Physica E 44, 1815–1819 (2012)CrossRefGoogle Scholar
  31. 31.
    N. Ghobadi, Derivation of ineffective thickness method for investigation of the exact behavior of the optical transitions in nanostructured thin films. J. Mater. Sci. 27, 8951–8956 (2016)Google Scholar
  32. 32.
    F. Urbach, The long-wavelength edge of photographic sensitivity and of the electronic absorption of solids. Phys. Rev. 92, 1324 (1953)CrossRefGoogle Scholar
  33. 33.
    J.D. Dow, D. Redfield, Toward a unified theory of Urbach’s rule and exponential absorption edges. Phys Rev B 5, 594 (1972)CrossRefGoogle Scholar
  34. 34.
    M. Caglar, S. Ilican, Y. Caglar, Y. Şahin, F. Yakuphanoglu, D. Hür, A spectroelectrochemical study on single-oscillator model and optical constants of sulfonated polyaniline film. Spectrochim. Acta Part A 71, 621–627 (2008)CrossRefGoogle Scholar
  35. 35.
    S. Wemple, M. DiDomenico Jr., Behavior of the electronic dielectric constant in covalent and ionic materials. Phys Rev B 3, 1338 (1971)CrossRefGoogle Scholar
  36. 36.
    S.A. Mahmoud, A. Shereen, A.T. Mou’ad, Structural and optical dispersion characterisation of sprayed nickel oxide thin films. J Mod Phys 2, 1178 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Applied Physics Division, Physics DepartmentKharazmi UniversityTehranIran
  2. 2.Physics DepartmentShahrood University of TechnologyShahroodIran

Personalised recommendations