Advertisement

Influence of mono energetic gamma radiation on structural and electrical properties of TiO2 thin film coated on p-type porous silicon

  • P. PandaramEmail author
  • B. Lawrence
  • N. Prithivikumaran
  • N. Jeyakumaran
Article
  • 7 Downloads

Abstract

Titanium dioxide thin film was coated on p-type porous silicon by sol–gel spin coating method. The prepared samples were irradiated by the mono-energetic gamma radiation at Auto-irradiation facility with the Cesium-137 for the Gamma dose range from 100 to 1000 mSv. Gamma irradiated samples revealed that the physical changes of titanium oxide/porous silicon layer found to be varying with increasing gamma dose. The irradiated titanium oxide/porous silicon layer were investigated by scanning electron microscopy, X-ray diffraction, Fourier transform infra-red, Photoluminescence and I–V characteristics studies. The surface morphology of the irradiated titanium oxide/porous silicon layer has shown deformation with increasing gamma dose. The X-ray diffraction patterns of titanium oxide/porous silicon layer after irradiation revealed changes in crystallite size, dislocation density, strain and phase content. These changes in anatase (004) are linear with gamma dose than the rutile (310) of TiO2-PSi. Fourier transform infra-red spectrums of the irradiated samples showed an increase in intensity of vibration modes with the increase of the radiation dose. Photoluminescence peaks are found to be in the range of 330 to 360 nm for all the irradiated samples and the intensity of Photoluminescence peak increased for the irradiated samples with increasing gamma dose. I–V Characteristics revealed that the electrical conductivity of irradiated samples increased linearly with gamma dose. The linear changes in electrical property of titanium oxide/porous silicon under the influence of mono-energetic gamma photons gives a positive indication that it can be further studied for the development of radiation sensor for applications in nuclear field.

Notes

References

  1. 1.
    Regulatory control of radioactive discharges to the environment IAEA SAFETY STANDARDS SERIES No. GSG-9. GSR Part 3, IAEA (2018)Google Scholar
  2. 2.
    M.G. Stabin, Radiation Protection and Dosimetry (Springer, New York, 2007)Google Scholar
  3. 3.
    G.F. Knoll, Radiation detection and measurement, Fourth Edition (Springer, New York, 2010)Google Scholar
  4. 4.
    K. Arshak, J. Corcoran, O. Korostynska, Gamma ray sensing properties of TiO2, ZnO, CuO and CdO thick film pn-junctions. Sens. Actuators A 123, 194–198 (2005)CrossRefGoogle Scholar
  5. 5.
    P. Dorenbos, The electronics structure of lanthanide impurities in TiO2, ZnO, SnO2 and related compounds. ECS J. Solid State Sci. Technol 3(3), R19–R24 (2014)CrossRefGoogle Scholar
  6. 6.
    Y. Bai, I. Mora-Sero, F. De Angelis, J. Bisquert, P. Wang, Titanium dioxide nanomaterials for photovoltaic applications. Chem. Rev. 114, 10095–10130 (2014)CrossRefGoogle Scholar
  7. 7.
    M.K. Hossain, M.T. Rahman, M.K. Basher, M.S. Manar, M.S. Bashar, Influence of thickness variation of gamma-irradiated DSSC photoanodic TiO2 film on structural, morphological and optical properties. Optik 178, 449–460 (2019)CrossRefGoogle Scholar
  8. 8.
    V.G. Bessergenev, M.C. Mateus, A.M.B. De Rego, M. Hantusch, E. Burkel, An improvement of photocatalytic activity of TiO2 Degussa P25 powder. Appl. Catal. A. 500, 40–50 (2015)CrossRefGoogle Scholar
  9. 9.
    V. Jovanović, S. Samaržija-Jovanović, B. Petković, V. Dekić, G. Marković, M. Marinović-Cincović, Effect of γ-irradiation on the hydrolytic and thermal stability of microandnano-TiO2 based urea–formaldehyde composites. RSC Adv. 5, 59715–59722 (2015)CrossRefGoogle Scholar
  10. 10.
    E. Enache-Pommer, J.E. Boercker, E.S. Aydil, Electron transport and recombination in polycrystalline TiO2 nanowire dye-sensitized solar cells. Appl. Phys. Lett. 91, 123116 (2007)CrossRefGoogle Scholar
  11. 11.
    S.M. Ali, Gamma induced effects on structural, optical and electrical properties of n-TiO2/p-Si heterojunction. J. Mater. Sci. 28, 16314–16320 (2017)Google Scholar
  12. 12.
    N.A. Al-Hamdani, R.D. Al-Alawy, Effect of gamma irradiation on the structural and optical properties of ZnO thin films. J. Comput. Eng. 16, 11–16 (2014)Google Scholar
  13. 13.
    International Standard:ISO14146:2000(E)Google Scholar
  14. 14.
    A. Saranya, J. Pandiarajan, N. Prithivikumaran, Synthesis and characterisation of TiO2/PS nano structure for sensor application. Int. J. Tech. Res. App. 38, 57–60 (2016)Google Scholar
  15. 15.
    P. Maliga, J. Pandiarajan, N. Prithivikumaran, K. Neyvasagam, Influence of film thickness on structural and optical properties of Sol-Gel spin coated TiO2 thin film. ISOR J. Appl. Phys. 6(1), 22–28 (2014)Google Scholar
  16. 16.
    I.K. Abbas, L.A. Najam, A.U. AuobSulaiman, The effect of gamma irradiation on the structural properties of porous silicon. Int. J. Phys. 3(1), 1–7 (2015)CrossRefGoogle Scholar
  17. 17.
    T.K. Maity, S.L. Sharma, Effect of gamma radiation on optical and electrical properties of tellurium dioxide thin films. Bull. Mater. Sci. 31(6), 841–846 (2008)CrossRefGoogle Scholar
  18. 18.
    K. Arshak, O. Korostynska, A. Arshak, D. Morris, Radiation-induced changes in the electrical properties of TiO2 thick film. In: 28th International Spring seminar on Electronics Technology, pp. 402–406 (2005)Google Scholar
  19. 19.
    K.A. Nagamatsu, S. Avasthi, G. Sahasrabudhe, G. Man, J. Jhaveri, A.H. Berg, J. Schwartz, A. Kahn, S. Wagner, J.C. Sturm, Titanium dioxide/silicon hole-blocking selective contact to enable double-heterojunction crystalline silicon-based solar cell. Appl. Phys. Lett. 106, 123906 (2015)CrossRefGoogle Scholar
  20. 20.
    H. Imran, T.M. Abdolkader, N.Z. Butt, Carrier-selective NiO/Si and TiO2/Si contacts for silicon heterojunction solar cells. IEEE Trans. Electron Devices 63(9), 3584–3590 (2016)CrossRefGoogle Scholar
  21. 21.
    S.M.K. Saha, M.H. Ali, M.F. Hossen, M.F. Pervez, M.N.H. Mia, M.K. Hossain, Structural, morphological, and optical properties of CuO thin films treated bygamma ray. In: 2018 International Conference on Computer, Communication, Chemical, Material and Electronic Engineeering IEEE, pp. 1–4 (2018)Google Scholar
  22. 22.
    M.K. Hossain, A.A. Mortuza, S.K. Sen, M.K. Basher, M.W. Ashraf, S. Tayyaba, A comparative study on the influence of pure anatase and degussa-P25 TiO2 nanomaterials on the structural and optical properties of dye sensitized solar cell (DSSC) photoanode. Optik 171, 507–516 (2018)CrossRefGoogle Scholar
  23. 23.
    J. Janam, A.H. Berg, J.C. Sturm, Isolation of hole versus electron current at p-Si/TiO2 selective contact using a heterojunction bipolar transistor structure. IEEE J. Photovolt. 8(3), 726–732 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Qiu, S.J. Kalita, Synthesis processing and charterisation of nanocrystaline titanium dioxide. Mater. Sci. Eng. A 435, 327–332 (2006)CrossRefGoogle Scholar
  25. 25.
    KralchevskaR,MilanovaM,TsvetkovM,DimitrovD, TodorovskyD(2012)Influence of gamma irradiation on the photocatalytic activity of Degussa P25 TiO2. J. Mater. Sci. 47, 4935–4936.CrossRefGoogle Scholar
  26. 26.
    M.K. Hossaina, M.T. Rahman, M.K. Basher, M.J. Afzal, M.S. Bashar, Impact of ionizing radiation doses on nanocrystalline TiO2 layer in DSSCs photoanode film. Results Phys. 11, 1172–1181 (2018)CrossRefGoogle Scholar
  27. 27.
    H.P. Klu, L.E. Alexander, X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, London, 1954), p. 491Google Scholar
  28. 28.
    A. Saranya, J. Pandiarajan, N. Jeyakumaran, N. Prithivikumaran, Studies on n-TiO2/p-Si structure for solar cell applications. Int. J. Chem Tech Research 6(13), 5270–5273 (2014)Google Scholar
  29. 29.
    D. Yoo, I. Kim, S. Kim, C.H. Hahn, C. Lee, S. Cho, Effects of annealing temperature and method on structural and optical properties of TiO2 films prepared by RF magnetron sputtering at room temperature. Appl. Surf. Sci. 253, 22 (2007)CrossRefGoogle Scholar
  30. 30.
    L.L. Yang, Y.S. Lai, J.S. Chen, P.H. Tsai, C.L. Chen, C.J. Chang, Compositional tailored sol-gel SiO2–TiO2 thin films: crystallization, chemical bonding configuration, and optical properties. J. Mater. Res. 20(11), 3142 (2005)CrossRefGoogle Scholar
  31. 31.
    A. Sharma, R.K. Karn, S.K. Pandiyan (2013) Mixed phase nanostructured TiO2 thin films for dye sensitized solar cells. Int. J. Appl. Eng. Res. 8(18), 2057Google Scholar
  32. 32.
    G. Soler-Illia, A. Louis, C. Sanchez, Synthesis and characterization of mesostructured titania-based materials through evaporation-induced self-assembly. Chem. Mater. 14(2), 750–759 (2002)CrossRefGoogle Scholar
  33. 33.
    J.C. Yu, L.Z. Zhang, Z. Zheng, J.C. Zhao, Synthesis and characterization of phosphated mesoporous titanium dioxide with high photocatalytic activity. Chem. Mater. 15(11), 2280–2286 (2003)CrossRefGoogle Scholar
  34. 34.
    S. Larouche, H. Szymanowski, J.E. Klemberg-Sapieha, L. Martinu, S.C. Gujrathi, Microstructure of plasma-deposited SiO2 /TiO2 optical films. J. Vac. Sci. Technol A 22, 1200 (2004)CrossRefGoogle Scholar
  35. 35.
    J.L. Whitten, Y. Zhang, M. Menon, G. Luvovsky, Electronic structure of SiO2: charge redistribution contributions to the dynamic dipoles effective charges of the infrared active normal modes. J. Vac. Sci. Techol. B 20, 1710–1719 (2002)CrossRefGoogle Scholar
  36. 36.
    S. El-Sherbiny, F. Morsy, M. Samir, O.A. Fouad, Synthesis characterization and application of TiO2 nanopowders as special paper coating pigment. Appl. Nano. Sci. 4, 305–313 (2014)CrossRefGoogle Scholar
  37. 37.
    M.A. Elistratova, N.M. Romanov, D.N. Goryachev, I.B. Zakharova, O.M. Sreseli, Effect of gamma irradiation on the photoluminescence of porous silicon. Semiconductors 51(5), 483–487 (2017)CrossRefGoogle Scholar
  38. 38.
    Y.F. You, C.H. Xu, S.S. Xu, S. Cao, J.P. Wang, Y.B. Huang, S.Q. Shi, Structural characterisation and optical property of TiO2 powder prepared by the sol-gel method. Ceram. Int. 40, 8659–8666 (2014)CrossRefGoogle Scholar
  39. 39.
    A. Welte, C. Waldauf, C. Brabec, P. Wellmann, Application of optical for the investigation of electronic and structural properties of sol-gel processed TiO2 films. Thin Solid Films 516, 7256–7259 (2008)CrossRefGoogle Scholar
  40. 40.
    S. Valencia, J.M. Marín, G. Restrepo, Study of the bandgap of synthesized titanium dioxide nanoparticules using the sol-gel method and a hydrothermal treatment. Open Mater. Sci J. 4, 9–14 (2010)Google Scholar
  41. 41.
    R.M. Yas, Gamma radiation induced changes in the optical properties of CdTe thin fils for dosimetric purpose. Iraq. J. Phys. 10(17), 71–76 (2012)Google Scholar
  42. 42.
    M. Mohil, G.A. Kumar, Gamma radiation induced effects in TeO2 thin films. J. Nano Electron. Phys. 5(2), 02018 (2013)Google Scholar
  43. 43.
    A. Sudha, S.L. Sharma, A.N. Gupta, Achieving sensitive and stable indium oxide thin films for gamma radiation monitoring. Sens. Actuators A 285, 378–385 (2019)CrossRefGoogle Scholar
  44. 44.
    M.M. Karkare, The direct transition and not indirect transition is more favourable for band gap calculation of Anatase TiO2 nano particles. Int. J. Sci. Eng. Res. 6(12), 48–53 (2015)Google Scholar
  45. 45.
    J.D. Zhang, S. Fung, L. Li-Bin, L. Zhi-Jun, Ti ion valence variation induced by ionizing radiation at TiO2-Si interface. Surf. Coat. Technol. 158, 238–241 (2002)CrossRefGoogle Scholar
  46. 46.
    K. Arshak, O. Korostynska, J. Harris, Gamma radiation dosimetry using screen printed nickel oxide thick films. In: Proceedings of MIEL 2002, 23rd Inter. Conference on Microelectronics, pp. 357–360 (2002)Google Scholar
  47. 47.
    G. Lindstorm, M. Moll, E. Fretwurst, Radiation hardness of Silicon detectos—a challenge from high-energy physics. Nucl. Instrum. Methods Phys. Res. A 426, 1–15 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • P. Pandaram
    • 1
    Email author
  • B. Lawrence
    • 2
  • N. Prithivikumaran
    • 2
  • N. Jeyakumaran
    • 2
  1. 1.TLD Lab, Kudankulam Nuclear Power ProjectTirunelveliIndia
  2. 2.Virudhunagar Hindu Nadars’ Senthikumara Nadar (V.H.N.S.N) College (Autonomous)VirudhunagarIndia

Personalised recommendations