Advertisement

Swift heavy ion induced surface modification of YBa2Cu3O7−δ/La0.67Sr0.33MnO3 bilayer superconducting thin films

  • Bibekananda Sahoo
  • Krutika L. Routray
  • Dhrubananda BeheraEmail author
Article
  • 20 Downloads

Abstract

Here, we examined the swift heavy ion (SHI) induced structural modification of YBCO/LSMO bilayer thin films deposited through pulse laser deposition technique. The films were irradiated by 200 MeV Ag ions with the fluence of 5 × 1012 ions/cm2. Swift heavy ion irradiation causes grain fragmentation leading to the formation of nanograin has been discussed. FESEM and AFM were carried out for surface morphology analysis before and after irradiation of the thin films. FESEM micrographs give confirmation about the fragmentation of larger grains into the smaller grains due to irradiation effect. The degree of the grain fragmentation has been initiated to be increased for bilayer structures. Atomic force microscopy (AFM) analysis also agrees well with the fragmentation due to irradiation. For higher fluence ~ 5 × 1012 ions/cm2 the reduction of grain size with the evolution of cracks has been observed. Power spectral density (PSD) analyses have been carried out to explain the AFM data followed by the fractal model and K-correlation model. XRD analysis gives confirmation about highly improved c-axis oriented growth of all thin films. Utilizing the Williamson–Hall plot on XRD data, the strain and dislocation density was estimated for all the films. The strain and dislocation density increases with the addition of ferromagnetic LSMO.

Notes

Acknowledgements

The authors are grateful to Inter University Accelerator Center (IUAC), New Delhi for the 15 UD Pelletron facilities. Authors are also grateful to Dr. D. Kanjilal, Director, Inter University Accelerator Center, New Delhi for all the help rendered during irradiation. We acknowledge Prof. T. Som, IOP Bhubaneswar for providing PLD technique for growth of thin film and AFM measurement and P.K Das of North Odisha University, Baripada for providing great support to analyzing the data. I would like to thank S.S Nayak for her support and advice during the work. The author (B. Sahoo) is thankful to DST INSPIRE for providing the financial support to carry out this performance.

References

  1. 1.
    J.G. Bednorz, K.A. Muller, Possible high T c superconductivity in the Ba–La–Cu–O system. Zeitschrift für Physik B 64, 189 (1986)CrossRefGoogle Scholar
  2. 2.
    Y. Feng, A.K. Pradhan, Y. Zhao, Y. Wu, N. Koshizuka, L. Zhou, Improved flux pinning in YxHo1-xBa2Cu3Oy fabricated by powder melting process. Supercond. Sci. Technol. 14, 224 (2001)CrossRefGoogle Scholar
  3. 3.
    S. Nariki, N. Sakai, M. Murakami, I. Hirabashi, Effect of RE2BaCuO5 refinement on the critical current density and trapped field of melt-textured (Gd, Y)–Ba–Cu–O bulk superconductors. Physica C 439, 62 (2006)CrossRefGoogle Scholar
  4. 4.
    C.J. Kim, G.W. Hong, Effect of RE2BaCuO5 refinement on the critical current density and trapped field of melt-textured (Gd, Y)–Ba–Cu–O bulk superconductors. Supercond. Sci. Technol. 12, R27 (1999)CrossRefGoogle Scholar
  5. 5.
    A. Mellekh, M. Zouaoui, F.B. Azzouz, M. Annabi, M.B. Salem, Nano-Al2O3 particle addition effects on Y Ba2Cu3Oy superconducting properties. Solid State Commun. 140, 318 (2006)CrossRefGoogle Scholar
  6. 6.
    A. Xu, A. Hu, M. Ichihara, N. Sakai, I. Hirabayashi, M. Izumi, Enhanced flux pinning of air-processed Gd123 by doping ZrO2 nanoparticles. Physica C, 460–462, 1341 (2007)CrossRefGoogle Scholar
  7. 7.
    C.J. Kim, N. Quadir, A. Mahmood, Y.H. Han, T.H. Sung, The effect of BaCeO3 nano particles on the current density of a melt-processed YBCO superconductor. Physica C, 463–465, 344 (2007)CrossRefGoogle Scholar
  8. 8.
    A. Benyagoub, F. Couvreur, S. Bouffard, F. Levesque, C. Dofour, E. Paumier, Kinetics of the crystalline to crystalline phase transformation induced in pure zirconia by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. 175, 417 (2001)CrossRefGoogle Scholar
  9. 9.
    P. Shah, S. Kumar, A. Gupta, R. Thangaraj, D.K. Avasthi, Thermal properties of swift heavy ion irradiated CuO. Nucl. Instrum. Methods Phys. Res. B 156, 222 (1999)CrossRefGoogle Scholar
  10. 10.
    M.S. Comboj, G. Kaur, R. Thangaraj,, D.K. Avasthi, Effect of heavy ion irradiation on the electrical and optical properties of amorphous chalcogenide thin films. J. Phys. D 35, 477 (2002)CrossRefGoogle Scholar
  11. 11.
    S. Balamurugan et al., Modifying the nanocrystalline characteristics—structure, size, and surface states of copper oxide thin films by high-energy heavy-ion irradiation. J. Appl. Phys. 92, 3304 (2002)CrossRefGoogle Scholar
  12. 12.
    S. Survase, H. Narayan, I. Sulania, M. Thakurdesai, Swift heavy ion irradiation induced nanograin formation in CdTe thin films. Nucl. Instrum. Methods Phys. Res. B 387, 1–9 (2016)CrossRefGoogle Scholar
  13. 13.
    S. Indra, D. Agarwal, K. Manish, H. Mushahid, D.K. Avasthi, Low energy bombardment induced formation of Ge nanoparticles. Adv. Mater. Lett. 4(6), 402–407 (2013)CrossRefGoogle Scholar
  14. 14.
    A. Tripathi, S.A. Khan, M. Kumar, V. Baranwal, R. Krishna, A.C. Pandey, SHI induced conducting tracks formation in C60. Nucl. Instrum. Methods Phys. Res. B 244, 225–299 (2006)CrossRefGoogle Scholar
  15. 15.
    D. Mohanta, N.C. Mishra, A. Choudhary, SHI-induced grain growth and grain fragmentation effects in polymer-embedded CdS quantum dot systems. Mater. Lett. 58, 3694–3699 (2004)CrossRefGoogle Scholar
  16. 16.
    B. Sahoo, K.L. Routray, K. Asokan, D. Behera, Study of fractal dimension and power spectral density analysis of superconductor/ferromagnetic bilayer. Nucl. Instrum. Methods Phys. Res. B 433, 51–59 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Bilal, S. Gul, A.-H.A. Shah, Effect of ion beam irradiation on the physical and chemical properties of plasticized poly ethylene terephthalate (PET) polymer used in medical device. J. Sci. Innov. Res. 4(1), 17–21 (2015)Google Scholar
  18. 18.
    M. Verma, A. Verma, Study of membrane morphology of SEM image of polymer nanocomposite membrane by digital image processing. Int. J. Eng. Res. Appl. 1(4), 1332–1336 (2010)Google Scholar
  19. 19.
    H. Trinkaus, A.I. Ryazanov, Viscoelastic model for the plastic flow of amorphous solids under energetic ion bombardment. Phys. Rev. Lett. 74, 5072–5075 (1995)CrossRefGoogle Scholar
  20. 20.
    H. Takayasu, Fractals in the Physical Sciences (Manchester University Press, Manchester, 1990), p. 123Google Scholar
  21. 21.
    H. Narayan, S.B. Samanta, H.M. Agarwal, R.P.S. Kushwaha, A. Gupta, S.K. Sharma, A.V. Narlikar, D. Kanjilal, A detailed investigation of surface modification in metallic glasses subjected to 130 MeV 28Si ion irradiation. Nucl. Instrum. Methods Phys. Res. B 196, 89–99 (2002)CrossRefGoogle Scholar
  22. 22.
    H. Narayan, S.B. Samanta, H.M. Agarwal, R.P.S. Kushwaha, D. Kanjilal, S.K. Sharma, A.V. Narlikar, An SEM and STM investigation of surface smoothing in 130 MeV Si-irradiated met glass MG2705M. J. Phys. Condens. Matt. 11, 2679–2687 (1999)CrossRefGoogle Scholar
  23. 23.
    H. Narayan, H.M. Agarwal, R.P.S. Kushwaha, D. Kanjilal, S.K. Sharma, Surface smoothing of metallic glasses by swift heavy ion irradiation. Nucl. Instrum. Methods Phys. Res. B 156, 217–221 (1999)CrossRefGoogle Scholar
  24. 24.
    V. Kumar, R.G. Singh, L.P. Purohit, F. Singh, Effect of swift heavy ion on structural and optical properties of undoped and doped nanocrystalline zinc oxide films. Adv. Mat. Lett. 4(6), 423–427 (2013)CrossRefGoogle Scholar
  25. 25.
    R. Petri, P. Brault, O. Vatel, D. Henry, E. Andre, P. Dumas, F. Salvan, Silicon roughness induced by plasma etching. J. Appl. Phys. 75, 7498 (1994)CrossRefGoogle Scholar
  26. 26.
    E.A. Eklund, E.J. Snyder, R.S. Williams, Correlation from randomness: quantitative analysis of ion-etched graphite surfaces using the scanning tunneling microscope. Surf Sci 285(3), 157-180 (1993)CrossRefGoogle Scholar
  27. 27.
    E.L. Church, Fractal Surface Finish. Appl Optics 27, 1518-1526 (1988)Google Scholar
  28. 28.
    C. Herring, Effect of change of scale on sintering phenomena. J. Appl. Phys. 21(4), 301-303 (1950)CrossRefGoogle Scholar
  29. 29.
    M. Senthil kumar, N.K. Sahoo, S. Thakur, R.B. Tokas, Characterization of micro-roughness parameters in gadolinium oxide thin films: a study based on extended power spectral density analyses. Appl Surf Sci 252(5), 1608-1619 (2005)Google Scholar
  30. 30.
    P. Dumas, B. Bouffakhreddine, C. Amra, Quantitative micro roughness analysis down to the nanometer scale. Europhys Lett 22(9), 717-722 (1993)CrossRefGoogle Scholar
  31. 31.
    R.P. Yadav, M. Kumar, A.K. Mittal, A.C. Pandey, Fractal and multifractal characteristics of swift heavy ion induced self-affine nanostructures BaF2 thin film surfaces. Chaos 25(8), 083115 (2015)CrossRefGoogle Scholar
  32. 32.
    P.K. Das, R. Biswal, R.J. Choudhary, V. Ganesan, P. Mallick, Evolution of surface topography and optical band gap of ZnO film deposited on NiO/Si (100). Surf Interface Anal. 50, 240–245 (2017)CrossRefGoogle Scholar
  33. 33.
    R. Colas, On the variation of grain size and fractal dimension in an austenitic stainless steel. Mater Charact 46(5), 353-358 (2001)CrossRefGoogle Scholar
  34. 34.
    Y. Gong, A.W. Wren, N.P. Mellott, Quantitative morphological and compositional evaluation of laboratory prepared alumino boro-silicate glass surfaces. Appl Surf Sci 324, 594-604 (2015)CrossRefGoogle Scholar
  35. 35.
    E.L. Church, P.Z. Tackacs, T.A. Leonard, The Prediction of BRDFs from Surface Profile Measurements. Proc SPIE 1165, 136-151 (1990)Google Scholar
  36. 36.
    G. Palasantzas, Roughness spectrum and surface width of self-affine fractal surfaces via the K-correlation model. Phys. Rev. B 48(19), 14472-14478 (1993)CrossRefGoogle Scholar
  37. 37.
    D.M. Tanenbaum, A.L. Laracuente, A. Gallagher, Surface roughening during plasma-enhanced chemical-vapor deposition of hydrogenated amorphous silicon on crystal silicon substrates. Phys. Rev. B 56(7), 4243-4250 (1997)CrossRefGoogle Scholar
  38. 38.
    J. Robertson, Deposition mechanism of hydrogenated amorphous silicon. J. Appl. Phys. 87(5), 2608-2617 (2000)CrossRefGoogle Scholar
  39. 39.
    S. Chandramohan, R. Sathyamoorthy, P. Sudhagar, D. Kanjilal, D. Kabiraj, K. Asokan, V. Ganesan, Influence of SHI irradiation on the structure and surface topography of CdTe thin films on flexible substrate. J. Mater. Sci. Mater. Electron. 18, 1093–1098 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Bibekananda Sahoo
    • 1
  • Krutika L. Routray
    • 1
  • Dhrubananda Behera
    • 1
    Email author
  1. 1.Department of Physics and AstronomyNational Institute of TechnologyRourkelaIndia

Personalised recommendations