A highly efficient UV-emitting Mg3Y2Ge3O12:Bi3+ crystal as a fluorescent irradiation source for use in heavy oil viscosity reduction

  • Wendong Lv
  • Baohong Ding
  • Xuyang Feng
  • Qiang WangEmail author


In this work, we discover and report a type of Mg3Y2Ge3O12:Bi3+ crystal that can not only show a highly efficient ultraviolet (UV) luminescence but also be used for reducing the heavy oil viscosity. To fully characterize the photoluminescence (PL) properties of Mg3Y2Ge3O12:Bi3+ crystal, various techniques, such as X-ray diffraction, scanning electronic microscope, UV–visible diffuse reflectance and PL spectra, are carried out. Our results reveal that the Mg3Y2Ge3O12:Bi3+ crystal features the particle size at ~ 30 µm and an broad Bi3+-related emission band peaked at 300 nm upon excitation at 270 nm at the same time. Significantly, although the Mg3Y2Ge3O12:Bi3+ crystal only show one emission band, this band can cover almost the whole UV spectral region from 290 to 410 nm, allowing this type of crystal to cover the band gap of TiO2 semiconductor that has the absorption wavelength of 387 nm and therefore serve as an efficient UV irradiation source for application in the photocatalytic field. As a result, we have designed a ceramic substrate to verify this application, through mixing the TiO2 semiconductor and Mg3Y2Ge3O12:Bi3+ crystal. Our results reveal that the photocatalytic properties of Mg3Y2Ge3O12:Bi3+/TiO2-based ceramic can be greatly enhanced for reducing the heavy oil viscosity (~ 4 times) as compared to the heavy oil that does not involve the Mg3Y2Ge3O12:Bi3+/TiO2-based ceramic.



This work is financially supported by the Liaoning Provincial Department of Education Basic Research Project (No. 2017LFW002).


  1. 1.
    S. Nakamura, Blue-green light-emitting diodes and violet laser diodes. MRS Bull. 22, 29–35 (1997)CrossRefGoogle Scholar
  2. 2.
    H.S. Chen, T.N. Cong, W. Yang, C.Q. Tan, Y.L. Li, Y.L. Ding, Progress in electrical energy storage system: a critical review. Prog. Nat. Sci. 19, 291–312 (2009)CrossRefGoogle Scholar
  3. 3.
    Z.G. Xia, Q.L. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater Sci. 84, 59–117 (2016)CrossRefGoogle Scholar
  4. 4.
    F.W. Kang, Y. Zhang, M.Y. Peng, Controlling the energy transfer via multi luminescent centers to achieve white light/tunable emissions in a single-phased X2-Type Y2SiO5:Eu3+,Bi3+ phosphor for ultraviolet converted LEDs. Inorg. Chem. 54, 1462–1473 (2015)CrossRefGoogle Scholar
  5. 5.
    C.H. Huang, T.M. Chen, Novel yellow-emitting Sr8MgLn(PO4)7:Eu2+ (Ln = Y, La) phosphors for applications in white LEDs with excellent color rendering index. Inorg. Chem. 50, 5725–5730 (2011)CrossRefGoogle Scholar
  6. 6.
    G.H. Lee, T.H. Kim, C.L. Yoon, S.H. Kang, Effect of local environment and Sm3+-codoping on the luminescence properties in the Eu3+-doped potassium tungstate phosphor for white LEDS. J. Lumin. 128, 1922–1926 (2008)CrossRefGoogle Scholar
  7. 7.
    P.L. Li, L.B. Pang, Z.J. Wang, Z.P. Yang, Q.L. Guo, X. Li, Luminescent characteristics of LiBaBO3:Tb3+ green phosphor for white LED. J. Alloy. Compd. 478, 813–815 (2009)CrossRefGoogle Scholar
  8. 8.
    S. Chawla, N. Kumar, H. Chander, Broad yellow orange emission from SrAl2O4:Pr3+ phosphor with blue excitation for application to white LEDs. J. Lumin. 129, 114–118 (2009)CrossRefGoogle Scholar
  9. 9.
    Y.Q. Li, N. Hirosaki, R.J. Xie, T. Takeda, M. Mitomo, Yellow-orange-emitting CaAlSiN3:Ce3+ phosphor: structure, photoluminescence, and application in White LEDs. Chem. Mater. 20, 6704–6714 (2008)CrossRefGoogle Scholar
  10. 10.
    F.W. Kang, M.Y. Peng, Q.Y. Zhang, J.R. Qiu, Abnormal anti-quenching and controllable multi-transitions of Bi3+ luminescence by temperature in a yellow-emitting LuVO4:Bi3+ phosphor for UV-converted white LEDs. Chem. Eur. J. 20, 11522–11530 (2014)CrossRefGoogle Scholar
  11. 11.
    F.W. Kang, M.Y. Peng, X.B. Yang, G.P. Dong, G.C. Nie, W.J. Liang, S.H. Xu, J.R. Qiu, Broadly tuning Bi3+ emission via crystal field modulation in solid solution compounds (Y,Lu,Sc)VO4:Bi for ultraviolet converted white LEDs. J. Mater. Chem. C 2, 6068–6076 (2014)CrossRefGoogle Scholar
  12. 12.
    F.W. Kang, M.Y. Peng, D.Y. Lei, Q.Y. Zhang, Recoverable and unrecoverable Bi3+-related photoemissions induced by thermal expansion and contraction in LuVO4:Bi3+ and ScVO4:Bi3+ compounds. Chem. Mater. 28, 7807–7815 (2016)CrossRefGoogle Scholar
  13. 13.
    X.M. Zhang, H.P. Zeng, Q. Su, Mn2+-doped Ba2ZnS3 phosphor as a potential luminescent material for white LEDs. J. Alloys Compd. 441, 259–262 (2007)CrossRefGoogle Scholar
  14. 14.
    L. Huang, Y.W. Zhu, X.J. Zhang, R. Zou, F.J. Pan, J. Wang, M.M. Wu, HF-free hydrothermal route for synthesis of highly efficient narrow-band red emitting phosphor K2Si1−xF6:xMn4+ for warm white light-emitting diodes. Chem. Mater. 28, 1495–1502 (2016)CrossRefGoogle Scholar
  15. 15.
    B. Wang, H. Lin, J. Xu, H. Chen, Y.S. Wang, CaMg2Al16O27:Mn4+-based red phosphor: a potential color converter for high-powered warm W-LED. ACS Appl. Mater. Interfaces 6, 22905–22913 (2014)CrossRefGoogle Scholar
  16. 16.
    F. Wang, Y.H. Chen, C.Y. Liu, D.G. Ma, White light-emitting devices based on carbon dots’ electroluminescence. Chem. Commun. 47, 3502–3504 (2011)CrossRefGoogle Scholar
  17. 17.
    Y.H. Chen, M.T. Zheng, Y. Xiao, H.W. Dong, H.R. Zhang, J.L. Zhuang, H. Hu, B.F. Lei, Y.L. Liu, A self-quenching-resistant carbon-dot powder with tunable solid-state fluorescence and construction of dual-fluorescence morphologies for white light-emission. Adv. Mater. 28, 312–318 (2016)CrossRefGoogle Scholar
  18. 18.
    Y. Lu, B. Yan, Lanthanide organic-inorganic hybrids based on functionalized metal-organic frameworks (MOFs) for a near-UV white LED. Chem. Commun. 50, 15443–15446 (2014)CrossRefGoogle Scholar
  19. 19.
    Y.J. Cui, T. Song, J.C. Yu, Y. Yang, Z.Y. Wang, G.D. Qian, Dye encapsulated metal-organic framework for warm-white LED with high color-rendering index. Adv. Funct. Mater. 25, 4796–4802 (2015)CrossRefGoogle Scholar
  20. 20.
    S.J. Zhuo, M.W. Shao, S.T. Lee, Upconversion and downconversion fluorescent graphene quantum dots: ultrasonic preparation and photocatalysis. ACS Nano 6, 1059–1064 (2012)CrossRefGoogle Scholar
  21. 21.
    T. Zhang, W.B. Lin, Metal-organic frameworks for artificial photosynthesis and photocatalysis. Chem. Soc. Rev. 43, 5982–5993 (2014)CrossRefGoogle Scholar
  22. 22.
    Z.W. Liu, Y.F. Ding, C.C. Zeng, Y. Meng, J. Tang, Q.P. Qiu, An efficient UV converted blue-emitting Lu2CaGeO6:Bi3+ persistent phosphor for potential application in photocatalysis. Ceram. Int. 44, 14712–14716 (2018)CrossRefGoogle Scholar
  23. 23.
    X.B. Chen, L. Liu, P.Y. Yu, S.S. Mao, Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331, 746–750 (2011)CrossRefGoogle Scholar
  24. 24.
    W. Zhao, W.H. Ma, C.C. Chen, J.C. Zhao, Z.G. Shuai, Efficient degradation of toxic organic pollutants with Ni2O3/TiO2−xBx under visible irradiation. J. Am. Chem. Soc. 126, 4782–4783 (2004)CrossRefGoogle Scholar
  25. 25.
    I.K. Konstantinou, T.A. Albanis, TiO2-assisted photocatalytic degradation of azo dyes in aqueous solution: kinetic and mechanistic investigations: A review. Appl. Catal. B 49, 1–14 (2004)CrossRefGoogle Scholar
  26. 26.
    A.L. Linsebigler, G.Q. Lu, J.T. Yates, Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95, 735–758 (1995)CrossRefGoogle Scholar
  27. 27.
    U. Tsutomu, Y. Tetsuya, I. Hisayoshi, A. Keisuke, Analysis of electronic structures of 3d transition metal-doped TiO2 based on band calculations. J. Phys. Chem. Solids 63, 1909–1920 (2002)CrossRefGoogle Scholar
  28. 28.
    C.D. Valentin, G. Pacchioni, Trends in non-metal doping of anatase TiO2: B, C, N and F. Catal. Today 206, 12–18 (2013)CrossRefGoogle Scholar
  29. 29.
    S. Sakthivel, H. Kisch, Daylight photocatalysis by carbon-modified titanium dioxide. Angew. Chem. Int. Ed. 42, 4908–4911 (2003)CrossRefGoogle Scholar
  30. 30.
    H.B. Yin, X.F. Chen, R.J. Hou, H.J. Zhu, S.Q. Li, Y.N. Huo, H.X. L, Ag/BiOBr film in a rotating-disk reactor containing long-afterglow phosphor for round-the-clock photocatalysis. ACS Appl. Mater. Interfaces 7, 20076–20082 (2015)CrossRefGoogle Scholar
  31. 31.
    H. Lin, J. Xu, Q.M. Huang, B. Wang, H. Chen, Z.B. Lin, Y.S. Wang, Bandgap tailoring via Si doping in inverse-garnet Mg3Y2Ge3O12:Ce3+ persistent phosphor potentially applicable in AC-LED. ACS Appl. Mater. Interfaces 7, 21835–21843 (2015)CrossRefGoogle Scholar
  32. 32.
    D. Lévy, J. Barbier, Normal and inverse garnets: Ca3Fe2Ge3O12, Ca3Y2Ge3O12 and Mg3Y2Ge3O12. Acta Crystallogr. C 55, 1611–1614 (1999)CrossRefGoogle Scholar
  33. 33.
    W. Xie, Y.M. Mo, C.W. Zou, F.W. Kang, G.H. Sun, Broad color tuning and Eu3+-related photoemission enhancement via controllable energy transfer in the La2MgGeO6:Eu3+,Bi3+ phosphor. Inorg. Chem. Front. 5, 1076–1084 (2018)CrossRefGoogle Scholar
  34. 34.
    A.B. Murphy, Band-gap determination from diffuse reflectance measurements of semiconductor films, and application to photoelectrochemical water-splitting. Sol. Energ. Mat. Sol. C. 91, 1326–1337 (2007)CrossRefGoogle Scholar
  35. 35.
    K.X. Wang, H.L. Niu, J.S. Chen, J.M. Song, C.J. Mao, S.Y. Zhang, Y.H. Gao, Immobilizing LaFeO3 nanoparticles on carbon spheres for enhanced heterogeneous photo-Fenton like performance. Appl. Surf. Sci. 404, 138–145 (2017)CrossRefGoogle Scholar
  36. 36.
    A.M. Srivastava, On the luminescence of Bi3+ in the pyrochlore Y2Sn2O7. Mater. Res. Bull. 37, 745–751 (2002)CrossRefGoogle Scholar
  37. 37.
    S.C. Yan, Z.S. Li, Z.G. Zou, Photodegradation of rhodamine B and methyl orange over boron-doped g-C3N4 under visible light irradiation. Langmuir 26, 3894–3901 (2010)CrossRefGoogle Scholar
  38. 38.
    C.H. Chiou, C.Y. Wu, R.S. Juang, Influence of operating parameters on photocatalytic degradation of phenol in UV/TiO2 process. Chem. Eng. J. 139, 322–329 (2008)CrossRefGoogle Scholar
  39. 39.
    X.D. Yan, C.W. Zou, X.D. Gao, W. Gao, ZnO/TiO2 core-brush nanostructure: processing, microstructure and enhanced photocatalytic activity. J. Mater. Chem. 22, 5629–5640 (2012)CrossRefGoogle Scholar
  40. 40.
    H.C. Sun, H.Y. Wu, Y.H. Jin, Y. Lv, G.F. Ju, L. Chen, Z.Y. Feng, Y.H. Hu, Photocatalytic titanium dioxide immobilized on an ultraviolet emitting ceramic substrate for water purification. Mater. Lett. 240, 100–102 (2019)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Wendong Lv
    • 1
  • Baohong Ding
    • 1
  • Xuyang Feng
    • 1
  • Qiang Wang
    • 1
    Email author
  1. 1.College of Chemistry, Chemical Engineering and Environmental EngineeringLiaoning Shihua UniversityFushunChina

Personalised recommendations