Investigation of third-order nonlinear optical properties of nanostructured Ni-doped CdS thin films under continuous wave laser illumination

  • Raghavendra BairyEmail author
  • A. Jayarama
  • G. K. Shivakumar
  • K. Radhakrishnan
  • Udaya K. Bhat


We report the third-order nonlinear optical (NLO) properties and optical limiting (OL) thresholds of pure CdS and Ni-doped CdS thin films have been investigated with the Z-scan technique under continuous wave laser excitation. Nanocrystalline CdS thin films with various doping concentrations of Ni (0%, 1%, 3%, 5% and 10 at.%) are prepared by spray-pyrolysis technique. XRD patterns reveal that all the prepared films are polycrystalline and the incorporation of Ni does not lead to major changes in the crystalline phase of Cd1−xNixS thin films. The surface morphology of the prepared films is impacted by the Ni-doping and is indicated by Field Emission Scanning Electron Microscopy (FESEM) images. With an increase in Ni-doping concentration, the energy band-gap value decreased from 2.48 eV to 2.23 eV. From the Z-scan data, it is observed that the material show strong two-photon absorption (2PA) and with an increase in Ni-doping concentrations from 0 to 10 at.%, the nonlinear absorption coefficient (β) are enhanced from 0.92 × 10−5 to 4.46 × 10−5 (cm W−1), nonlinear refractive index (n2) from 0.2967 × 10−9 to 0.1297 × 10−8 (cm2 W−1) and thereby the third-order NLO susceptibility (χ(3)) values also increased from 1.7075 × 10−6 to 7.4743 × 10−6 (esu). OL characteristics of the prepared films are studied at the experimental wavelength. The results propose that the Cd1−xNixS film is a capable material for nonlinear optical devices at 532 nm and optical power limiting applications.



The author Raghavendra Bairy would like to express thanks to NMAM Institute of Technology, Nitte, India for providing the research facilities and encouragement to carry out the study. Authors are grateful to Mangalore University DST-PURSE laboratory for providing the FESEM facility and the Department of Physics, KLE college of Engineering, Hubballi for providing the Z-scan facilities.


  1. 1.
    J. Hernandez-Borja, Y. Vorobiev, R. Ramirez-Bon, Sol. Energy Mater. Sol. Cells 95, 1882 (2011)CrossRefGoogle Scholar
  2. 2.
    W. Wondmagegn, I. Mejia, A. Salas-Villasenor, H. Stiegler, M. Quevedo-Lopez, R. Pieper, B. Gnade, Microelectron. Eng. 157, 64 (2016)CrossRefGoogle Scholar
  3. 3.
    Y.L. Song, Y. Li, F.Q. Zhou, P.F. Ji, X.J. Sun, M.L. Wan, M.L. Tian, Mater. Lett. 196, 8 (2017)CrossRefGoogle Scholar
  4. 4.
    B.-G. An, Y.W. Chang, H.-R. Kim, G. Lee, M.-J. Kang, J.-K. Park, J.-C. Pyun, Sens. Actuat. B 221, 884 (2015)CrossRefGoogle Scholar
  5. 5.
    M. Afzaal, P. O’Brien, J. Mater. Chem. 16, 1597 (2006)CrossRefGoogle Scholar
  6. 6.
    M. Gunasekaran, M. Ichimura, Sol. Energ Mater Sol. Cell 91, 774–778 (2007)CrossRefGoogle Scholar
  7. 7.
    H. Pan, J.B. Yi, L. Shen, R.Q. Wu, J.H. Yang, Y.P. Feng, J. Ding, L.H. Van, J.H. Yin, Phys. Rev. Lett. 99, 127201 (2009)CrossRefGoogle Scholar
  8. 8.
    H. Zeng, J. Han, D. Qian, Y. Gu, Opt. Int. J. Light Electron. Opt. 125, 6558–6561 (2014)CrossRefGoogle Scholar
  9. 9.
    T. Thilak, M. Basheer Ahamed, G. Vinitha, Opt. Int. J. Light Electron. Opt. 124, 4716–4720 (2013)CrossRefGoogle Scholar
  10. 10.
    S. Abed, M.S. Aida, K. Bouchouit, A. Arbaoui, K. Iliopoulos, B. Sahraoui, Opt. Mater. 33, 968–972 (2011)CrossRefGoogle Scholar
  11. 11.
    X. Li, J.V. Embden, J.W. Chon, G. Min, Appl. Phys. Lett. 94, 103117-1–103117-3 (2009)Google Scholar
  12. 12.
    M.A. Islam, F. Haque, K.S. Rahman, N. Dhar, M.S. Hossain, Y. Sulaiman, N. Amin, Optik Int. J. Light Electron. Opt. 126, 3177–3180 (2015)CrossRefGoogle Scholar
  13. 13.
    K. Rupali, P. Amit, W. Ravindra, J. Ashok, B. Haribhau, A. Rahul, B. Ajinkya, N. Shruthi, S. Priyanka, J. Sandesh, J. Nano Electron. Phys. 10, 03005 (2018)Google Scholar
  14. 14.
    H. Sakai, T. Tamaru, T. Sumomogi, H. Ezumi, B. Ullrich, Jpn. J. Appl. Phys. 37, 4149 (1998)CrossRefGoogle Scholar
  15. 15.
    A. Rmili, F. Ouachtari, A. Bouaoud, A. Louardi, T. Chtouki, B. Elidrissi, H. Erguig, J. Alloys Compd. 557, 53–59 (2013)CrossRefGoogle Scholar
  16. 16.
    I.M.E.I. Radaf, T.A. Hameed, I.S. Yahia, Mater. Res. Express 5, 066416 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Aksu, E. Bacaksiz, M. Parlak, S. Yilmaz, I. Polat, M. Altunbas, M. Turksoy, R. Topkaya, K. Ozdogan, Mater. Chem. Phys. 130, 340 (2011)CrossRefGoogle Scholar
  18. 18.
    S. Butt, N.A. Shah, A. Nazir, Z. Ali, A. Maqsood, J. Alloys Compd. 587, 582 (2014)CrossRefGoogle Scholar
  19. 19.
    S. Yilmaz, Appl. Surf. Sci. 357, 873 (2015)CrossRefGoogle Scholar
  20. 20.
    A. Podesta, N. Armani, G. Salviati, N. Romeo, A. Bosio, M. Prato, Thin Solid Films 448, 511–512 (2006)Google Scholar
  21. 21.
    R. Bairy, A. Jayarama, G.K. Shivakumar, S.D. Kulkarni, S.R. Maidur, P.S. Patil, Physica B 555, 145–151 (2019)CrossRefGoogle Scholar
  22. 22.
    T. Chtouki, Y. El Kouari, B. Kulyk, A. Louardi, A. Rmili, H. Erguig, B. Elidrissi, L. Soumahoro, B. Sahraoui, J. Alloys Compd. 696, 1292 (2017)CrossRefGoogle Scholar
  23. 23.
    A.T. Ravichandran, A. Robert Xavier, K. Pushpanathan, B.M. Nagabhushana, R. Chandramohan, J. Mater. Sci.: Mater. Electron. 27, 2693–2700 (2016)Google Scholar
  24. 24.
    C. Gayathri, A. Ramalingam, Spectrochem. Acta A 69, 980–984 (2008)CrossRefGoogle Scholar
  25. 25.
    G. Sree Kumar, B. Valsala Milka, C.I. Muneera, K. Sathiyamoorthy, C. Vijayan, Opt. Mater. 30, 311–313 (2007)CrossRefGoogle Scholar
  26. 26.
    L. Zhang, T. Yabu, I. Taniguchi, Mater. Res. Bull. 44, 707–713 (2009)CrossRefGoogle Scholar
  27. 27.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, Quantum Electron. 26, 760 (1990)CrossRefGoogle Scholar
  28. 28.
    Standard, JCPDS data card no. 892944. Physica 27, 337 (1961)CrossRefGoogle Scholar
  29. 29.
    B. Kulyk, V. Figa, V. Kapustianyk, M. Panasyuk, R. Serkiz, P. Demchenko, Acta Phys. Pol. A 123, 92–97 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Mageswari, L. Dhivya, B. Palanivel, R. Murugan, J. Alloys Compd. 545, 41–45 (2012)CrossRefGoogle Scholar
  31. 31.
    J. Tauc, Amorphous and Liquid Semiconductors (Plenum Press, New York, 1974), p. 159CrossRefGoogle Scholar
  32. 32.
    A. Podesta, N. Armani, G. Salviati, M. Romeo, A. Bosio, M. Prato, Thin Solid Films 511, 448 (2006)CrossRefGoogle Scholar
  33. 33.
    R.W. Boyd, Nonlinear Optics, Text Book Version, 3rd ed. (Elseveir, Amsterdam), pp. 1–50 (2008)Google Scholar
  34. 34.
    Z.S. Fadhul, E.A.H.F. Ali, S.R. Maidur, P.S. Patil, M. Shkir, F.Z. Henari, J. Nonlinear Opt. Phys. Mater. 27, 1850012 (2018)CrossRefGoogle Scholar
  35. 35.
    S.R. Maidur, P.S. Patil, Opt. Mater. 84, 28 (2018)CrossRefGoogle Scholar
  36. 36.
    N.K.M.N. Srinivas, S.V. Rao, D.N. Rao, J. Opt. Soc. Am. B 20, 2470 (2003)CrossRefGoogle Scholar
  37. 37.
    B. Gu, X.Q. Huang, S.Q. Tan, M. Wang, W. Ji, Appl. Phys. B 95, 375 (2009)CrossRefGoogle Scholar
  38. 38.
    B. Gu, J. Wang, J. Chen, Y.-X. Fan, J. Ding, H. Twang, Opt. Express, 13, 9230 (2005)CrossRefGoogle Scholar
  39. 39.
    B. Gu, W. Ji, H.Z. Yang, H.T. Wang, Appl. Phys. Lett. 96, 081104 (2010)CrossRefGoogle Scholar
  40. 40.
    J. Chen, X. Wang, Q. Ren, P.S. Patil, T. Li, H. Yang, J. Zhang, G. Li, L. Zhu, Appl. Phys. A 105, 723 (2011)CrossRefGoogle Scholar
  41. 41.
    H. Morkoc, U. Ozgur, first ed., (Wiley-VCH), pp. 1–488 (2009)Google Scholar
  42. 42.
    B. Gu, K. Lou, J. Chen, H.-T. Wang, W. Ji, J. Opt. Soc. Am. B 27, 2438 (2010)CrossRefGoogle Scholar
  43. 43.
    P.S. Patil, S.R. Maidur, S.V. Rao, S.M. Dharmaprakash, Opt. Laser Technol. 81, 70 (2016)CrossRefGoogle Scholar
  44. 44.
    M. Sheik-Bahae, A.A. Said, T. Wei, D.J. Hagen, E.W. Van Stryland, IEEE J. Quant. Electron. 26, 760 (1990)CrossRefGoogle Scholar
  45. 45.
    M. Sheik-Bahae, A.A. Said, E.W. Van Stryland, Opt. Lett. 14, 955–957 (1989)CrossRefGoogle Scholar
  46. 46.
    M. Sheik-Bahae, A.A. Said, T.H. Wei, D.J. Hagan, E.W. Van Stryland, IEEE J. Quantum Electron. 26, 760–769 (1990)CrossRefGoogle Scholar
  47. 47.
    A. Rherari, M. Addou, Z. Sofiani, M. El, M. Jbilou, M. Diani, A. Chahboun, J. Mater. Environ. Sci. 7, 554 (2016)Google Scholar
  48. 48.
    N. Demetrios, I.C. Christodoulides, G.J. Khoo, G.I. Salamo, E.W. Stegeman, Van Stryland, Adv. Opt. Photonics 2, 60–200 (2010)CrossRefGoogle Scholar
  49. 49.
    S.V. Rao, P.T. Anusha, T.S. Prashant, D. Swain, S.P. Tewari, Mater. Sci. Appl. 2, 299 (2011)Google Scholar
  50. 50.
    M.H. Mahdieh, M.A. Jafarabadi, Opt. Laser Technol. 44, 78–940 (2012)CrossRefGoogle Scholar
  51. 51.
    K.K. Nagaraja, S. Pramodini, H.S. Nagaraja, P. Poornesh, J. Phys. D 46, 055106 (2013)CrossRefGoogle Scholar
  52. 52.
    M. Rashidian, D. Dorranian, Rev. Adv. Mater. Sci. 40, 110 (2015)Google Scholar
  53. 53.
    P. Prem Kiran, S. Venugopal Rao, M. Ferrari, B.M. Krishna, H. Sekhar, S. Alee, D. Narayana Rao, Nonlinear Opt. Quantum Opt. 40, 223 (2010)Google Scholar
  54. 54.
    N. Venkatram, D. Narayana Rao, M.A. Akundi, Opt. Express 13, 867 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of PhysicsN.M.A.M. Institute of TechnologyKarkalaIndia
  2. 2.Department of PhysicsAlva’s Institute of Engineering and TechnologyMoodabidriIndia
  3. 3.Department of PG PhysicsAlva’s CollegeMoodabidriIndia
  4. 4.Department of Civil EngineeringN.M.A.M. Institute of TechnologyKarkalaIndia
  5. 5.Department of Metallurgical and Materials EngineeringNITKSurathkalIndia

Personalised recommendations