Length-dependent electro-optical properties of silver nanowires-based transparent conducting films

  • X. Yang
  • D. X. Du
  • Y. H. WangEmail author


In this paper, silver nanowires (AgNWs) with mean diameters of 65 nm and mean length of 9.8 µm were synthesized by the polyol solvothermal method. Sonication-induced scission was used to obtain AgNWs with a length range of 7.1–3.3 µm, and further AgNWs solutions were prepared with as-synthesized AgNWs as conductive fillers in the ethanol. A series of AgNWs random networks were prepared on the glass substrate using spray coating technique. Photoelectric properties and microstructure characterizations of AgNWs random networks were conducted to identify changes in such properties and the extent of these changes as a function of the length and content of AgNWs. The results show the sheet resistance and the transmittance of AgNWs network gradually increase as the length of AgNWs decrease. However, as the concentration of AgNWs increase, the sheet resistance and the transmittance of AgNWs networks decreases and increases, respectively. To obtain an approximative Rs of AgNWs film, the concentration of AgNWs with a length of 7.1 µm should be 1.2 times that of AgNWs with a length of 9.1 µm, with a 10% dropped transmittance. These results are attributed to the increase of the contact resistance among AgNWs networks and the density of AgNWs at the same area coverage. As the concentration of AgNWs increases, the deposition density of AgNWs networks increases, and both the sheet resistance and the transmittance decrease gradually.



This work was financially supported by National Science Foundation of China under Grants of (61302044, 61671140) and Zhongshan Science and Technology Projects (2018SYF10).


  1. 1.
    W. Jo, H.S. Kang, J. Choi, H. Lee, H.T. Kim, ACS Appl. Mater. Interfaces. 9(17), 5114–15121 (2017)CrossRefGoogle Scholar
  2. 2.
    P. Wang, Z. Peng, M. Li, Y.H. Wang, Small 1802625 (2018)Google Scholar
  3. 3.
    D. Li, W.Y. Lai, Y.Z. Zhang, W. Huang, Adv. Mater. 30(10), 1704738 (2018)CrossRefGoogle Scholar
  4. 4.
    J. Huang, J. Lin, Y. Hsueh, Nanosc. Nanotechnol. Lett. 8(3), 255–259 (2016)CrossRefGoogle Scholar
  5. 5.
    J.H. Han, D.H. Kim, E.G. Jeong, T.W. Lee, M.K. Lee, J.W. Park, H. Lee, K.C. Choi, ACS Appl. Mater. Interfaces. 9(19), 16343–16350 (2017)CrossRefGoogle Scholar
  6. 6.
    S.M. Bergin, Y.H. Chen, A.R. Rathmell, P. Charbonneau, Z.Y. Li, B.J. Wiley, Nanoscale 4(6), 1996–2004 (2012)CrossRefGoogle Scholar
  7. 7.
    I.V. Anoshkin, I.I. Nefedova, I.S. Nefedov, D.V. Lioubtchenko, A.G. Nasibulin, A.V. Räisänen, Micro Nano Lett. 11(7), 343–347 (2016)CrossRefGoogle Scholar
  8. 8.
    J.C. Lee, D.Y. Kim, J.H. Lee, S.S. Ray, A.L. Yarin, M.T. Swihart, D. Kim, S.S. Yoon, Adv. Funct. Mater. 27(1), 1602548 (2017)CrossRefGoogle Scholar
  9. 9.
    B.P. Singh, S. Nayak, K.K. Nanda, A. Singh, C. Takai, S. Takashi, M. Fuji, Polym. Compos. 39(1), 297–304 (2016)CrossRefGoogle Scholar
  10. 10.
    J. Kang, H. Kim., K.S. Kim, S.K. Lee, S. Bae, J.H. Ahn, Y.J. Kim, J.B. Choi, B.H. Hong, Nano Lett. 11(12), 5154–5158 (2011)CrossRefGoogle Scholar
  11. 11.
    O. Urper, I. Çakmak, N. Karatepe. Mater. Lett. 223, 210–214 (2018)CrossRefGoogle Scholar
  12. 12.
    G. Hassan, J. Bae, C.H. Lee, J. Mater. Sci. Mater. Electron. 29(1), 49–55 (2018)CrossRefGoogle Scholar
  13. 13.
    N. Misbah, H. Ali, I. Muhammad, Nanosci. Nanotechnol. Lett. 9, 1649–1655 (2017)CrossRefGoogle Scholar
  14. 14.
    M. Xie, H. Lu, L. Zhang, J. Wang, Q. Luo, J. Lin, L. Ba, H. Liu, W. Shen, L. Shi, C.Q. Ma, Solar RRL 1700184, 1–10 (2018)Google Scholar
  15. 15.
    Y. Tao, Y. Tao, L. Wang, B. Wang, Z. Yang, Y. Tai, Nanoscale Res. Lett. 8(1), 147–152 (2013)CrossRefGoogle Scholar
  16. 16.
    Z.L. Li, H. Xie, D. Jun, Y.H. Wang, X.Y. Wang, J.Z. Li, J. Mater. Sci Mater. Electron. 26(9), 6532–6538 (2015)CrossRefGoogle Scholar
  17. 17.
    J. Bao, B. Bi, H. Yu, W. Gao, N. Wang, S. Yang, Nanosci. Nanotechnol. Lett. 9, 1033–1037 (2017)CrossRefGoogle Scholar
  18. 18.
    H. Dai, M. Spaid, SID Symposium Digest of Technical Papers, 49(1), 397–400 (2018)Google Scholar
  19. 19.
    M.A. Shinde, K. Mallikarjuna, J. Noh, H. Kim, Thin Solid Films 660, 447–454 (2018)CrossRefGoogle Scholar
  20. 20.
    B. Yoo, Y. Kim, C.J. Han, Appl. Surf. Sci. 29, 151–157 (2018)CrossRefGoogle Scholar
  21. 21.
    X. Guo, Y. Huang, W. Pan, W. Kan, L. Mao, Y. Zhang, Nanosci. Nanotechnol. Lett. 9, 1632–1638 (2017)CrossRefGoogle Scholar
  22. 22.
    S. Chen, Y. Guan, Y. Li, X. Yan, H. Ni, L. Li, J. Mater. Chem. C 5(9), 2404–2414 (2017)CrossRefGoogle Scholar
  23. 23.
    P.E. Lyons, S. De, F. Blighe, V. Nicolosi, L.F.C. Pereira, M.S. Ferreira, J.N. Coleman, J. Appl. Phys. 104(4), 044302 (2008)CrossRefGoogle Scholar
  24. 24.
    F. Hennrich, R. Krupke, K. Arnold, J.A. Rojas Stutz, S. Lebedkin, T. Koch, T. Schimmel, M.M. Kappes, J. Phys. Chem. B 111(8), 1932–1937 (2007)CrossRefGoogle Scholar
  25. 25.
    K. Lzumi, Y. Ochiai, D. Shiokawa, Y. Yoshida, D. Kumaki, S. Tokito, Jpn. J.Appl. Phys 56(5S2), 05EB02 (2017)CrossRefGoogle Scholar
  26. 26.
    D. Zhang, Y.L. Liu, D. Zhang, H. Yan, Y. Zhang, Mater. Lett. 201, 50–53 (2017)CrossRefGoogle Scholar
  27. 27.
    Y.Y. Huang, T.P.J. Knowles, E.M. Terentjev, Adv. Mater. 21(38–39), 3945–3948 (2009)CrossRefGoogle Scholar
  28. 28.
    J.W. Jang, C.E. Lee, C.J. Lee, Curr. Appl. Phys. 17(4), 507–512 (2017)CrossRefGoogle Scholar
  29. 29.
    D.Y. Choi, H.W. Kang, H.J. Sung, S.S. Kim, Nanoscale 5, 977–983 (2013)CrossRefGoogle Scholar
  30. 30.
    T.C. Hauger, M.I. Al-RafiaS. J.M. Buriak, ACS Appl. Mater. Interfaces 5, 12663–12671 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials and EnergyUniversity of Electronic Science and Technology of ChinaChengduChina
  2. 2.Department of Chemistry and BiologyUniversity of Electronic Science and Technology of China Zhongshan InstituteZhongshanChina

Personalised recommendations