Advertisement

Facile synthesis and characterization of three-dimensional graphene/polyaniline composites with enhanced electrochemical properties

  • Jinhuan LiEmail author
  • Jiahui Ren
  • Yanfang Xu
  • Huanmin Ji
  • Xuexue Zou
Article
  • 32 Downloads

Abstract

In situ polymerization of aniline was carried out within graphene hydrogels with the ultrasonic treatment, and thus the polyaniline (PANI) was loaded and the three-dimensional (3D) graphene/PANI aerogel composite (GPA) was facilely obtained after freeze drying. The investigation shows that the polyaniline as twisted nano-rods was formed and scattered in the interconnected porous 3D graphene. When a supercapacitor electrode was fabricated with the composite GPA, the specific capacitance at a current density of 1 A g−1 can reach as high as 618 F g−1. The capacity retains 89% of the initial value in constant current charge–discharge mode (at the current density of 10 A g−1) after 2000 cycles. The improved electrochemical properties were confirmed to be resulted from the unique network morphology, enhanced conductivity and the synergy effect between graphene and polyaniline. The composite GPA is self-supporting and can be directly used as the electrode material without adding binders. This contribution provides a simple method to prepare the electrode material with enhanced electrochemical properties based on graphene. The GPA composite shows great potential for application in supercapacitors.

Notes

Acknowledgements

Financially supports of this work by Aeronautical Science Foundation of China (No. 2017ZF52065) and Nanjing University of Aeronautics and Astronautics Open Foundation (No. kfjj20170620) are gratefully acknowledged.

References

  1. 1.
    Y.X. Xu, Z.Y. Lin, X. Zhong, X.Q. Huang, N.O. Weiss, Y. Huang, X.F. Duan, Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4554–4561 (2014)CrossRefGoogle Scholar
  2. 2.
    A. Burke, R&D considerations for the performance and application of electrochemical capacitors. Electrochim. Acta 53(3), 1083–1091 (2007)CrossRefGoogle Scholar
  3. 3.
    M.S. Raghu, K.Y. Kumar, S. Rao, T. Aravinda, B.P. Prasanna, M.K. Prashanth, Fabrication of polyaniline-few-layer MoS2 nanocomposite for high energy density supercapacitors. Polym. Bull. 75, 4359–4375 (2018)CrossRefGoogle Scholar
  4. 4.
    T. Zhu, J. Wang, G.W. Ho, Self-supported yolk–shell nanocolloids towards high capacitance and excellent cycling performance. Nano Energy 18, 273–282 (2015)CrossRefGoogle Scholar
  5. 5.
    X. Feng, R. Li, Y. Ma, One-step electrochemical synthesis of graphene /polyaniline composite film and its applications. Adv. Funct. Mater. 21, 2989–2996 (2011)CrossRefGoogle Scholar
  6. 6.
    H. Wang, D.S. Zhang, T.T. Yan, X.R. Wen, J.P. Zhang, L.Y. Shi, Q.D. Zhong, Three-dimensional macroporous graphene architectures as high performance electrodes for capacitive deionization. J. Mater. Chem. A 1(38), 11778–11789 (2013)CrossRefGoogle Scholar
  7. 7.
    D. Vonlanthen, P. Lazarev, K.A. See, F. Wudl, A.J. Heeger, A stable polyaniline-benzoquinone-hydroquinone supercapacitor. Adv. Mater. 26(30), 5095–5100 (2014)CrossRefGoogle Scholar
  8. 8.
    K. Lee, J.Y. Byun, H.J. Shin, S.H. Kim, A high-performance supercapacitor based on polyaniline-nanoporous gold. J. Alloy. Compd. 779, 74–80 (2019)CrossRefGoogle Scholar
  9. 9.
    Y. Xie, F. Zhu, Electrochemical capacitance performance of polyaniline/tin oxide nanorod array for supercapacitor. J. Solid State Electr. 21(6), 1675–1685 (2017)CrossRefGoogle Scholar
  10. 10.
    Q. Wu, Y. Xu, Z. Yao, A. Liu, G. Shi, Supercapacitors based on flexible graphene/polyaniline nanofiber composite films. ACS Nano 4(4), 1963–1970 (2010)CrossRefGoogle Scholar
  11. 11.
    N.A. Kumar, H.J. Choi, Y.R. Shin, D.W. Chang, L. Dai, J.B. Baek, Polyaniline-grafted reduced graphene oxide for efficient electrochemical supercapacitors. ACS Nano 6(2), 1715–1723 (2012)CrossRefGoogle Scholar
  12. 12.
    B. Ma, X. Zhou, H. Bao, X. Li, G. Wang, Hierarchical composites of sulfonated graphene-supported vertically aligned polyaniline nanorods for high-performance supercapacitors. J. Power Sources 215, 36–42 (2012)CrossRefGoogle Scholar
  13. 13.
    K. Zhang, L.L. Zhang, X.S. Zhao, J. Wu, Graphene/polyaniline nanofiber composites as supercapacitor electrodes. Chem. Mater. 22(4), 1392–1401 (2010)CrossRefGoogle Scholar
  14. 14.
    J. Sun, H. Bi, Pickering emulsion fabrication and enhanced supercapacity of graphene oxide-covered polyaniline nanoparticles. Maters. Lett. 81(4), 48–51 (2012)CrossRefGoogle Scholar
  15. 15.
    B.G. Choi, M. Yang, H. Hong et al., 3D macroporous grapheme frameworks for supercapacitors with high energy and power densities. ACS nano 6(5), 4020–4028 (2012)CrossRefGoogle Scholar
  16. 16.
    X.J. Lu, H. Dou, S.D. Yang, L. Hao, F. Zhang, X.G. Zhang, Fabrication and electrochemical capacitive behavior of freestanding graphene/polyaniline nanofiber film. Acta Phys. Chim. Sin. 27(10), 2333–2339 (2011)Google Scholar
  17. 17.
    K. Chi, Z. Zhang, J. Xi, Y. Huang, F. Xiao, S. Wang, Y. Liu, Freestanding graphene paper supported three-dimensional porous graphene-polyaniline nanocomposite synthesized by inkjet printing and in flexible all-solid-state supercapacitor. ACS Appl. Mater. Interfaces 6, 16312–16319 (2014)CrossRefGoogle Scholar
  18. 18.
    X. Dong, J. Wang, J. Wang, M.B. Chan-Park, X. Li, L. Wang, W. Huang, P. Chen, Supercapacitor electrode based on three-dimensional graphene polyaniline hybrid. Mater. Chem. Phys. 134, 576–580 (2012)CrossRefGoogle Scholar
  19. 19.
    H. Sun, P. She, K. Xu, Y. Shang, S. Yin, Z. Liu, A self-standing nanocomposite foam of polyaniline@reduced graphene oxide for flexible super-capacitors. Synthetic Met. 209, 68–73 (2015)CrossRefGoogle Scholar
  20. 20.
    Y. Meng, K. Wang, Y. Zhang, Z. Wei, Hierarchical porous graphene/polyaniline composite film with superior rate performance for flexible supercapacitors. Adv. Mater. 25, 6985–6990 (2013)CrossRefGoogle Scholar
  21. 21.
    P. Yu, X. Zhao, Y. Li, Q. Zhang, Controllable growth of polyaniline nanowire arrays on hierarchical macro/mesoporous graphene foams for high-performance flexible supercapacitors. Appl. Surf. Sci. 393, 37–45 (2017)CrossRefGoogle Scholar
  22. 22.
    J.D. Wang, T.J. Peng, H.Y. Xian, H.J. Sun, Preparation and supercapacitive performance of three dimensional reduced graphene oxide/polyaniline composite. Acta Phys. Chim. Sin. 31(1), 90–98 (2015)Google Scholar
  23. 23.
    D. Chen, H. Feng, J. Li, Graphene oxide: preparation, functionalization, and electrochemical applications. Chem. Rev. 112, 6027–6053 (2012)CrossRefGoogle Scholar
  24. 24.
    Z.A. Boeva, V.G. Sergeyev, Polyaniline: Synthesis, properties, and application. Polym. Sci. Ser. C. 56, 144–153 (2014)CrossRefGoogle Scholar
  25. 25.
    M. Alshabanat, A. Al-Arrash, W. Mekhamer, Polystyrene/montmorillonite nanocomposites: Study of the morphology and effects of sonication time on thermal stability. J. Nanomater. 2013(ID650725), 1–13 (2013)CrossRefGoogle Scholar
  26. 26.
    H.L. Cao, X.F. Zhou, Y.M. Zhang, L. Chen, Z.P. Liu, Microspherical polyaniline/graphene nanocomposites for high performance supercapacitors. J. Power Sources 24(3), 715–720 (2013)CrossRefGoogle Scholar
  27. 27.
    Y. Liu, R.J. Deng, Z. Wang, H.T. Liu, Carboxyl-functionalized grapheme oxide-polyaniline composite as a promising supercapacitor material. J. Mater. Chem. 22(27), 13619–13624 (2012)CrossRefGoogle Scholar
  28. 28.
    F.V.A. Dutra, B.C. Pires, T.A. Nascimento, V.M.K.B. Borges, Polyaniline-deposited cellulose fiber composite prepared via in situ polymerization: enhancing adsorption properties for removal of meloxicam from aqueous media. RSC Adv. 7, 12639–12649 (2017)CrossRefGoogle Scholar
  29. 29.
    Y. Wang, X. Wu, W. Zhang, Synthesis and high-performance microwave absorption of graphene foam/polyaniline nanorods. Mater. Lett. 165, 71–74 (2016)CrossRefGoogle Scholar
  30. 30.
    L. Zhou, Z. Yang, J. Yang, Y. Wu, D. Wei, Facile syntheses of 3-dimension graphene aerogel and nanowalls with high specific surface areas. Chem. Phys. Lett. 677, 7–12 (2017)CrossRefGoogle Scholar
  31. 31.
    A.S. Al-Hussaini, K.R. Eltabie, M.E.E. Rashad, One-pot modern fabrication and characterization of TiO2@terpoly(aniline, anthranilic acid and o-phenylenediamine) coreshell nanocomposites via polycondensation. Polymer 101, 328–337 (2016)CrossRefGoogle Scholar
  32. 32.
    T. Wang, L. Wang, D. Wu, W. Xia, D. Jia, Interaction between nitrogen and sulfur in Co-doped graphene and synergetic effect in supercapacitor. Sci. Rep. 5(ID9591), 1–9 (2015)Google Scholar
  33. 33.
    M. Hassan, K.R. Reddy, E. Haque, S.N. Faisal, S. Ghasemi, A.I. Minett, V.G. Gomes, Hierarchical assembly of graphene/polyaniline nanostructures to synthesize free-standing supercapacitor electrode. Compos. Sci. Technol. 98, 1–8 (2014)CrossRefGoogle Scholar
  34. 34.
    M.J. Fernandez Merino, L. Guardia, J.I. Paredes, S. Villarrodil, P. Solísfernández, Vitamin C is an ideal substitute for hydrazine in the reduction of graphene oxide suspensions. J. Phys. Chem. C 114(14), 6426–6432 (2010)CrossRefGoogle Scholar
  35. 35.
    G. Han, Y. Liu, L. Zhang, E. Kan, S. Zhang, J. Tang, W. Tang, MnO2 nanorods intercalating graphene oxide/polyaniline ternary composites for robust high-performance supercapacitors. Sci. Rep. 4(ID4824), 1–7 (2014)Google Scholar
  36. 36.
    J.M.A.R.B. Jayasinghe, R.T. De Silva, M. Rohini, K.M. de Silva, M.M.M.G.P.G. Nalin de Silva, Mantilaka, Vinod Asantha Silva. Effect of networked hybridized nanoparticle reinforcement on the thermal conductivity and mechanical properties of natural rubber composites. RSC Adv.  https://doi.org/10.1039/C8RA08543A (2019)Google Scholar
  37. 37.
    Y. Liu, X. Zhao, C. Wang, L. Zhang, M.X. Li, Y. Pan, Y. Fu, J. Liu, H. Lu, Egg albumen templated graphene foams for high-performance supercapacitor electrodes and electrochemical sensors. J. Mater. Chem. A 6, 18267–18275 (2018)CrossRefGoogle Scholar
  38. 38.
    J. Liu, L. Zhang, H.B. Wu, J. Lin, Z. Shen, X.W. Lou, High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film. Energy Environ. Sci. 7, 3709–3719 (2014)CrossRefGoogle Scholar
  39. 39.
    H. Fan, N. Zhao, H. Wang, J. Xu, F. Pan, 3D conductive network-based free-standing PANI/RGO/MWNTs hybrid film for high-performance flexible supercapacitor. J. Mater. Chem. A 2(31), 12340–12347 (2014)CrossRefGoogle Scholar
  40. 40.
    X. Li, L. Jiang, C. Zhou, J. Liu, H. Zeng, Integrating large specific surface area and high conductivity in hydrogenated NiCo2O4 double-shell hollow spheres to improve supercapacitors. NPG Asia Mater. 7(ID165e), 1–8 (2015)Google Scholar
  41. 41.
    G. Ali, G. Rahman, K.Y. Chung, Cobalt-doped pyrochlore-structured iron fluoride as a highly stable cathode material for lithium-ion batteries. Electrochim. Acta 238, 49–55 (2017)CrossRefGoogle Scholar
  42. 42.
    G. Ali, J. Lee, B.W. Cho, K.W. Nam, D. Ahn, W. Chang, S.H. Oh, Y. Kyung, Chung, Probing the sodiation-sesodiation reactions in nano-sized iron fluoride cathode. Electrochim. Acta 191, 307–316 (2016)CrossRefGoogle Scholar
  43. 43.
    G. Ali, A. Mehmood, H. Ha, J. Kim, K.Y. Chung, Reduced graphene oxide as a stable and high-capacity cathode material for Na-ion batteries. Sci. Rep. 7(ID40910), 1–8 (2017)Google Scholar
  44. 44.
    N. Hu, L. Zhang, C. Yang, J. Zhao, Z. Yang, H. Wei, H. Liao, Z. Feng, A. Fisher, Y. Zhang, Z.J. Xu, Three-dimensional skeleton networks of graphene wrapped polyaniline nanofbers: an excellent structure for high-performance flexible solid-state supercapacitors. Sci. Rep. 6(ID19777), 1–10Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jinhuan Li
    • 1
    Email author
  • Jiahui Ren
    • 1
  • Yanfang Xu
    • 1
  • Huanmin Ji
    • 1
  • Xuexue Zou
    • 1
  1. 1.Materials Science and TechnologyNanjing University of Aeronautics and AstronauticsNanjingPeople’s Republic of China

Personalised recommendations