Advertisement

Construction of novel ZnTiO3/g-C3N4 heterostructures with enhanced visible light photocatalytic activity for dye wastewater treatment

  • Jinyang Zhuang
  • Bei Zhang
  • Qiang Wang
  • Shiyou GuanEmail author
  • Bing LiEmail author
Article
  • 3 Downloads

Abstract

In this study, the crystalline and homogenous ZnTiO3 particles were first synthesized in KCl-NaCl eutectic chloride salts at 700–850 °C. Then the ZnTiO3 was successfully loaded onto g-C3N4 sheets to form ZnTiO3/g-C3N4 composites during the polymerization of melamine. Compared with pure g-C3N4, ZnTiO3/g-C3N4 composites have shown an obvious red shift phenomenon and enhanced light harvesting ability in the spectra range of 200–800 nm as well as much lower recombination rate of the photogenerated charge carriers. The ZTOCN1-800 samples exhibited a 1.69 times specific surface area as pure g-C3N4 by BET analysis, and a 76% degradation efficiency for methyl orange (MO) under visible light irradiation in 180 min, about 13 times as that of pure ZnTiO3 and 3 times as that of pure g-C3N4. Moreover, The ZTOCN1-800 samples achieved complete degradation of MB and RhB under visible light irradiation within 90 min. This is attributed to the intimate heterostructure interface between g-C3N4 and ZnTiO3 due to ZnTiO3 particles intercalation into the g-C3N4 sheets, which reduced the self-aggregation of the g-C3N4 sheets and greatly facilitated the charge transfer from photo-excited g-C3N4 to ZnTiO3. These were demonstrated by XRD, SEM, EDX, TEM, UV–Vis, PL and photoelectrochemical analysis.

Notes

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant No. 51774145).

Supplementary material

10854_2019_932_MOESM1_ESM.docx (1 mb)
Supplementary material 1 (DOCX 1031 KB)

References

  1. 1.
    G. Michael, Solar energy conversion by dye-sensitized photovoltaic cell. Inorg. Chem. 44, 6841–6851 (2005)CrossRefGoogle Scholar
  2. 2.
    W. Wang, M.O. Tade, Z.P. Shao, Research progress of perovskite materials in photocatalysis- and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44, 5371–5408 (2015)CrossRefGoogle Scholar
  3. 3.
    K.S. Ranjith, P. Manivel, R.T. Rajendrakumar, T. Uyar, Multifunctional ZnO nanorod-reduced graphene oxide hybrid nanocomposites for effective water remediation: effective sunlight driven degradation of organic dyes and rapid heavy metal adsorption. Chem. Eng. J. 325, 588–600 (2017)CrossRefGoogle Scholar
  4. 4.
    T. Nonami, H. Hase, K. Funakoshi, Apatite-coated titanium dioxide photocatalyst for air purification. Catal. Today 96, 113–118 (2004)CrossRefGoogle Scholar
  5. 5.
    X.C. Zhang, D.F. Xu, Y.R. Jia, S.Y. Zhang, Fabrication of metal/semiconductor hybrid Ag/AgInO2 nanocomposites with enhanced visible-light-driven photocatalytic properties. RSC Adv. 7, 30392–30396 (2017)CrossRefGoogle Scholar
  6. 6.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nat. 238, 37–38 (1972)CrossRefGoogle Scholar
  7. 7.
    S. Sakthivel, B. Neppolian, M.V. Shankar, B. Arabindoob, M. Palanichamyb, V. Murugesanb, Solar photocatalytic degradation of azo dye: comparison of photocatalytic efficiency of ZnO and TiO2. Sol Energy Mat. Sol. C. 77, 65–82 (2003)CrossRefGoogle Scholar
  8. 8.
    M. Matsumura, Y. Saho, H. Tsubomura, Photocatalytic hydrogen production from solutions of sulfite using platinized cadmium sulfide powder. J. Phys. Chem. 87, 3807–3808 (1983)CrossRefGoogle Scholar
  9. 9.
    A. Mofareh, S.U.M. Khan, W.B. Ingler Jr, Efficient photochemical water splitting by a chemically modified n-TiO. Sci. 297, 2243–2245 (2002)CrossRefGoogle Scholar
  10. 10.
    U. Alam, A. Khan, W. Raza, D. Bahnemann, M. Muneer, Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity. Catal. Today 284, 169–178 (2017)CrossRefGoogle Scholar
  11. 11.
    S.H. Lei, H.Q. Fan, X.H. Ren, J.W. Fang, L.T. Ma, Z.Y. Liu, Novel sintering and band gap engineering of ZnTiO3 ceramics with excellent microwave dielectric properties. J. Mater. Chem. C 5, 4040–4047 (2017)CrossRefGoogle Scholar
  12. 12.
    R.C. Pawar, S. Kang, J.H. Park, J.H. Kim, S. Ahn, C.S. Lee, Evaluation of a multi-dimensional hybrid photocatalyst for enrichment of H2 evolution and elimination of dye/non-dye pollutants. Catal. Sci. Technol. 7, 2579–2590 (2017)CrossRefGoogle Scholar
  13. 13.
    S.P. Wu, J.H. Luo, S.X. Cao, Microwave dielectric properties of B2O3-doped ZnTiO3 ceramics made with sol-gel technique. J. Alloy. Compd. 502, 147–152 (2010)CrossRefGoogle Scholar
  14. 14.
    Y.S. Chang, Y.H. Chang, I.G. Chen, G.J. Chen, Y.L. Chai, Synthesis and characterization of zinc titanate nano-crystal powders by sol–gel technique. J. Cryst. Growth 243, 319–326 (2002)CrossRefGoogle Scholar
  15. 15.
    H.H. Ou, L.H. Lin, Y. Zheng, P.J. Yang, Y.X. Fang, X.C. Wang, Tri-s-triazine-based crystalline carbon nitride nanosheets for an improved hydrogen evolution. Adv. Mater. 29, 1–6 (2017)CrossRefGoogle Scholar
  16. 16.
    F. Ding, D. Yang, Z.W. Tong, Y.H. Nan, Y.J. Wang, X.Y. Zou, Z.Y. Jiang, Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environ. Sci.: Nano 4, 1455–1469 (2017)Google Scholar
  17. 17.
    J.W. Fu, J.G. Yu, C.J. Jiang, B. Cheng, G-C3N4-Based heterostructured photocatalysts. Adv. Energy Mater. 8, 1–31 (2018)Google Scholar
  18. 18.
    C.Y. Zhou, C. Lai, D.L. Huang, G.M. Zeng, C. Zhang, M. Cheng, L. Hu, J. Wan, W.P. Xiong, M. Wen, Highly porous carbon nitride by supramolecular preassembly of monomers for photocatalytic removal of sulfamethazine under visible light driven. Appl. Catal. B-Environ. 22, 202–210 (2018)CrossRefGoogle Scholar
  19. 19.
    J.D. Hu, D.Y. Chen, N.J. Li, Q.F. Xu, H. Li, J.H. He, J.M. Lu, 3D aerogel of graphitic carbon nitride modified with perylene imide and graphene oxide for highly efficient nitric oxide removal under visible light. Small 14, 1–10 (2018)Google Scholar
  20. 20.
    B. Zhang, T.J. Zhao, W.J. Feng, Y.X. Liu, H.H. Wang, H. Su, L.B. Lv, X.H. Li, J.S. Chen, Polarized few-layer g-C3N4 as metal-free electrocatalyst for highly efficient reduction of CO2. Nano Res. 11, 2450–2459 (2017)CrossRefGoogle Scholar
  21. 21.
    L.F. Cui, Y.F. Liu, X.Y. Fang, C.C. Yin, S.S. Li, D. Sun, S.F. Kang, Scalable and clean exfoliation of graphitic carbon nitride in NaClO solution: enriched surface active sites for enhanced photocatalytic H2 evolution. Green Chem. 20, 1354–1361 (2018)CrossRefGoogle Scholar
  22. 22.
    C.W. Yang, J.Q. Qin, Z. Xue, M.Z. Ma, X.Y. Zhang, R.P. Liu, Rational design of carbon-doped TiO2 modified g-C3N4 via in-situ heat treatment for drastically improved photocatalytic hydrogen with excellent photostability. Nano Energy 41, 10403–10473 (2017)Google Scholar
  23. 23.
    T. Giannakopoulou, I. Papailias, N. Todorova, N. Boukos, Y. Liu, J.G. Yu, C. Trapalis, Tailoring the energy band gap and edges’ potentials of g-C3N4/TiO2 composite photocatalysts for NOx removal. Chem. Eng. J. 310, 571–580 (2017)CrossRefGoogle Scholar
  24. 24.
    X.W. Shi, M. Fujitsuka, S. Kim, T. Majima, Faster electron injection and more active sites for efficient photocatalytic H2 evolution in g-C3N4/MoS2 hybrid. Small 14, 1–9 (2018)Google Scholar
  25. 25.
    H. Tian, S.C. Wang, C. Zhang, J.P. Veder, J. Pan, M. Jaroniec, L.Z. Wang, J. Liu, Design and synthesis of porous ZnTiO3/TiO2 nanocages with heterojunctions for enhanced photocatalytic H2 production. J. Mater. Chem. A 5, 11615–11622 (2017)CrossRefGoogle Scholar
  26. 26.
    X.C. Liu, Molten salt synthesis of ZnTiO3, powders with around 100 nm grain size crystalline morphology. Mater. Lett. 80, 69–71 (2012)CrossRefGoogle Scholar
  27. 27.
    L. Ge, C.C. Han, X.L. Xiao, L.L. Guo, Y.J. Li, Enhanced visible light photocatalytic hydrogen evolution of sulfur-doped polymeric g-C3N4 photocatalysts. Mater. Res. Bull. 48, 3919–3925 (2013)CrossRefGoogle Scholar
  28. 28.
    Y.C. Pu, H.C. Fan, T.W. Liu, J.W. Chen, Methylamine lead bromide perovskite/protonated graphitic carbon nitride nanocomposites: interfacial charge carrier dynamics and photocatalysis. J. Mater. Chem. A 5, 25438–25449 (2017)CrossRefGoogle Scholar
  29. 29.
    M.S. Niasari, F. Soofivand, A.S. Nasab, M.S. Arani, A.Y. Faal, S. Bagheri, Synthesis, characterization, and morphological control of ZnTiO3 nanoparticles through sol-gel processes and its photocatalyst application. Adv. Powder Technol. 27, 2066–2075 (2016)CrossRefGoogle Scholar
  30. 30.
    H.M. Chen, Y.H. Xie, X.Q. Sun, M.L. Lv, F.F. Wu, L. Zhang, L. Li, X.X. Xu, Efficient charge separation based on type-II g-C3N4/TiO2-B nanowire/tube heterostructure photocatalysts. Dalton Trans. 44, 13030–13039 (2015)CrossRefGoogle Scholar
  31. 31.
    L.Q. Zhang, X. He, X.W. Xu, C. Liu, Y.L. Duan, L.Q. Hou, Q.D. Zhou, C. Ma, X.P. Yang, R. Liu, F. Yang, L.S. Cui, C.M. Xu, Y.F. Li, Highly active TiO2/g-C3N4/G photocatalyst with extended spectral response towards selective reduction of nitrobenzene. Appl. Catal. B-Environ. 203, 1–8 (2017)CrossRefGoogle Scholar
  32. 32.
    N. Tian, Y.H. Zhang, X.W. Li, K. Xiao, X. Du, F. Dong, G.I.N. Waterhouse, T.R. Zhang, H.W. Huang, Precursor-reforming protocol to 3D mesoporous g-C3N4 established by ultrathin self-doped nanosheets for superior hydrogen evolution. Nano Energy 38, 72–81 (2017)CrossRefGoogle Scholar
  33. 33.
    Y.N. Shi, J.J. Chen, Z.Y. Mao, B.D. Fahlman, D.J. Wang, Construction of Z-scheme heterostructure with enhanced photocatalytic H2 evolution for g-C3N4 nanosheets via loading porous silicon. J. Catal. 356, 22–31 (2017)CrossRefGoogle Scholar
  34. 34.
    Q.Z. Luo, X.L. Yang, X.X. Zhao, D.S. Wang, R. Yin, X.Y. Li, An facile preparation of well-dispersed ZnO/cyclized polyacrylonitrile nanocomposites with highly enhanced visible-light photocatalytic activity. Appl. Catal. B-Environ. 204, 304–315 (2017)CrossRefGoogle Scholar
  35. 35.
    S. Vignesh, A.L. Muppudathi, J. Sridhar, J.K. Sundar, Construction of high efficient g-C3N4 nanosheets combined with Bi2MoO6-Ag photocatalysts for visible light driven photocatalytic activity and inactivation of bacterias. Arab. J. Chem. (2018).  https://doi.org/10.1016/j.arabjc.2018.05.009 Google Scholar
  36. 36.
    D.L. Jiang, L.L. Chen, J.J. Zhu, M. Chen, W.D. Shi, J.M. Xie, Novel p–n heterojunction photocatalyst constructed by porous graphite-like C3N4 and nanostructured BiOI: facile synthesis and enhanced photocatalytic activity. Dalton Trans. 42, 15726 (2013)CrossRefGoogle Scholar
  37. 37.
    X.D. Zhang, H.X. Wang, H. Wang, Q. Zhang, J.F. Xie, Y.P. Tian, J. Wang, Y. Xie, Single-layered graphitic-C3N4 quantum dots for two-photon fluorescence imaging of cellular nucleus. Adv. Mater. 26, 4438–4443 (2014)CrossRefGoogle Scholar
  38. 38.
    Z. Liu, H. Zheng, H.X. Yang, L. Hao, L. Wen, T.Z. Xu, S.Y. Wu, Mpg-C3N4/anatase TiO2 with reactive {001} facets composites to enhance the photocatalytic activity of organic dye degradation. RSC Adv. 6, 54215–54225 (2016)CrossRefGoogle Scholar
  39. 39.
    Y.f. Liu, W.Q. Yao, D. Liu, R.L. Zong, M. Zhang, X.G. Ma, Y.F. Zhu, Enhancement of visible light mineralization ability and photocatalytic activity of BiPO4/BiOI. Appl. Catal. B-Environ. 163, 547–553 (2015)CrossRefGoogle Scholar
  40. 40.
    K. Huang, Y.Z. Hong, X. Yan, C.Y. Huang, J.B. Chen, M.Y. Chen, W.D. Shi, C.B. Liu, Hydrothermal synthesis of g-C3N4/CdWO4 nanocomposite and enhanced photocatalytic activity for tetracycline degradation under visible light. CrystEngComm 18, 6453–6463 (2016)CrossRefGoogle Scholar
  41. 41.
    Y.J. Cui, J.H. Huang, X.Z. Fu, X.C. Wang, Metal-free photocatalytic degradation of 4-chlorophenol in water by mesoporous carbon nitride semiconductors. Catal. Sci. Technol. 2, 1396–1402 (2012)CrossRefGoogle Scholar
  42. 42.
    S. Saha, J.M. Wang, A. Pal, Nano silver impregnation on commercial TiO2 and a comparative photocatalytic account to degrade malachite green. Sep. Purif. Technol. 89, 147–159 (2012)CrossRefGoogle Scholar
  43. 43.
    S. Vignesh, A.L. Muppudathi, J.K. Sundar, Multifunctional performance of gC3N4-BiFeO3-Cu2O hybrid nanocomposites for magnetic separable photocatalytic and antibacterial activity. J. Mater. Sci. Mater. Electron. 29, 10784–10801 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringEast China University of Science and TechnologyShanghaiChina
  2. 2.School of Mechanical and Power EngineeringEast China University of Science and TechnologyShanghaiChina
  3. 3.Institute for Sustainable EnergyShanghai UniversityShanghaiChina

Personalised recommendations