High performance humidity sensor based on V0.5Sn0.5Se2 ternary alloy

  • Chetan K. ZankatEmail author
  • Pratik Pataniya
  • Mohit Tannarana
  • G. K. Solanki
  • K. D. Patel
  • V. M. Pathak


Recently, the humidity sensors have captivated huge attention for making human life more comfortable and to diagnose several diseases. Here, we reported the excellent humidity responsiveness of V0.5Sn0.5Se2 ternary alloy for human breath monitoring and touchless positioning interface. The resistive sensor based on direct vapour transport grown bulk crystal of V0.5Sn0.5Se2 ternary alloy is fabricated and explored for its static response in different humidity levels ranging from 20 to 90%. The sensor showed excellent dynamic switching characteristics between relative humidity of 20% and 90% with responsivity of 6.78%, response time of 3.2 s and recovery time of 2.3 s. Subsequently, the sensor is exploited for giant responsiveness for human breath monitoring and words recognitions. The sensor exhibited quite distinct response towards different words namely, “Pratik”, “Chetan” and “Mohit”. Besides, novel touch-less positioning interface is explained with respect to humidity variation. Overall, the results advocate development of resistive sensors for intended humidity, biomedical as well as for intelligent touch-less sensing applications.



  1. 1.
    C. Giaconia, A. Orioli, A.D. Gangi, Air quality and relative humidity in commercial aircrafts: an experimental investigation on short-haul domestic flights. Build. Environ. 67, 69–81 (2013)CrossRefGoogle Scholar
  2. 2.
    G.H. Zhou, J.H. Byun, Y. Oh, B.M. Jung, H.J. Cha, D.G. Seong, M.K. Um, S. Hyun, T.W. Chou, Highly sensitive wearable textile-based humidity sensors made of high-strength, single-walled carbon nanotubes/poly(vinyl alcohol) filaments. ACS Appl. Mater. Interfaces 9, 4788–4797 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Wang, R.W. Besant, C.J. Simonson, W. Shang, Application of humidity sensors and an interactive device. Sens. Actuators, B 115, 93–101 (2006)CrossRefGoogle Scholar
  4. 4.
    H. Khan, K. Malook, M. Shah, Highly selective and sensitive ammonia sensor using polypyrrole/V2O5 composites. J. Mater. Sci.: Mater. Electron. 28(18), 13873–13879 (2017)Google Scholar
  5. 5.
    D. Zhang, Y. Sun, P. Li, Y. Zheng, Facile fabrication of MoS2-modified SnO2 hybrid nanocomposite for ultrasensitive humidity sensing. ACS Appl. Mater. Interfaces 8, 93–101 (2016)Google Scholar
  6. 6.
    M. Bhattacharjee, H.B. Nemade, D. Bandyopadhyay, Nano-enabled paper humidity sensor for mobile based point-of-care lung function monitoring. Biosen. Bioelectron. 94, 544–551 (2017)CrossRefGoogle Scholar
  7. 7.
    L. Xia, L.C. Li, W. Li, T. Kou, D.M. Liu, Novel optical fiber humidity sensor based on a no-core fiber structure. Sens. Actuators A. 190, 1–5 (2013)CrossRefGoogle Scholar
  8. 8.
    C. Sun, K.R.G. Karthik, S.S. Pramana, L.H. Wong, J. Zhang, Y.Z. Huang, C.H. Sow, N. Mathews, S.G. Mhaisalkar, The role of tin oxide surface defects in determining nanonet FET response to humidity and photoexcitation. J. Mater. Chem. C. 2, 940–945 (2014)CrossRefGoogle Scholar
  9. 9.
    N. Li, X.D. Chen, X.P. Chen, X. Ding, X. Zhao, Ultra-high sensitivity humidity sensor based on MoS2/Ag composite films. IEEE Electron Device Lett. 38, 806–809 (2017)CrossRefGoogle Scholar
  10. 10.
    L.Q. Tao, K.N. Zhang, H. Tian, Y. Liu, D.Y. Wang, Y.Q. Chen, Y. Yang, T.L. Ren, Graphene-paper pressure sensor for detecting human motions. ACS Nano. 11, 8790–8795 (2017)CrossRefGoogle Scholar
  11. 11.
    K. Lee, R. Gatensby, N. McEvoy, T. Hallam, G.S. Duesberg, High performance sensors based on molybdenum disulfide thin films. Adv. Mater. 25, 6699 (2013)CrossRefGoogle Scholar
  12. 12.
    D.J. Late, Y.K. Huang, B. Liu, J. Acharya, S.N. Shirodkar, J. Luo, A. Yan, D. Charles, U.V. Waghmare, V.P. Dravid, C.N.R. Rao, Sensing behavior of atomically thin-layered MoS2 transistors. ACS Nano 7, 4879 (2013)CrossRefGoogle Scholar
  13. 13.
    Y. Qin et al., Lightweight, superelastic, and mechanically flexible graphene/polyimide nanocomposite foam for strain sensor application. ACS Nano. 9, 8933–8941 (2015)CrossRefGoogle Scholar
  14. 14.
    C.U. Vyas, P. Pataniya, C.K. Zankat, V.M. Pathak, K.D. Patel, G.K. Solanki, Transient photo-response properties of CdTe thin films synthesized by screen printing technique. Mater. Sci. Semicond. Process. 71, 226–231 (2017)CrossRefGoogle Scholar
  15. 15.
    P. Pataniya, G.K. Solanki, C.K. Zankat, M. Tannarana, K.D. Patel, V.M. Pathak, Giant humidity responsiveness of WSe2 nanosheets for novel electronic listening and touchless positioning interface. J. Mater. Sci.: Mater. Electron. (2019). Google Scholar
  16. 16.
    C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, S. Narayan, P.K. Jha, Investigation of morphological and structural properties of V incorporated SnSe2 single crystals. Mater. Sci. Semicond. Process. 80, 137 (2018)CrossRefGoogle Scholar
  17. 17.
    C.K. Zankat, P. Pataniya, G.K. Solanki, K.D. Patel, V.M. Pathak, Alloy engineering for enhanced photodetection in VxSn1_xSe2 ternary crystals. Mater. Lett. 221, 35 (2018)CrossRefGoogle Scholar
  18. 18.
    F. Jun, P. Lele, W. Changzheng, S. Xu, H. Shuanglin, L. Chenwen, D. Jun, Y. Jinlong, Y. Xie, Giant moisture responsiveness of VS2 ultrathin nanosheets for novel touchless positioning interface. Adv. Mater. 24, 1969 (2012)CrossRefGoogle Scholar
  19. 19.
    V. Solanki, S.B. Krupanidhi, K.K. Nanda, Sequential elemental dealloying approach for the fabrication of porous metal oxides and chemiresistive sensors thereof for electronic listening. ACS Appl. Mater. Interfaces. 9, 41428–41434 (2017)CrossRefGoogle Scholar
  20. 20.
    M. Righettoni, A. Tricoli, S.E. Pratsinis, Si:WO3 sensors for highly selective detection of acetone for easy diagnosis of diabetes by breath analysis. Anal. Chem. 82, 3581–3587 (2010)CrossRefGoogle Scholar
  21. 21.
    U. Tisch, H. Haick, Arrays of chemisensitive monolayer-capped metallic nanoparticles for diagnostic breath testing. Rev. Chem. Eng. 26, 171 (2010)CrossRefGoogle Scholar
  22. 22.
    A.S. Pawbake, R. Waykar, D.J. Late, S.R. Jadkar, Highly transparent wafer-scale synthesis of crystalline WS2 nanoparticle thin film for photodetector and humidity-sensing applications. ACS Appl. Mater. Interfaces. 8, 3359–3365 (2016)CrossRefGoogle Scholar
  23. 23.
    Z. Chen, C. Lu, Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3, 274–295 (2005)CrossRefGoogle Scholar
  24. 24.
    A.S. Pawbake, A. Date, S.R. Jadkar, D.J. Late, Temperature dependent raman spectroscopy and sensing behavior of few layer SnSe2 nanosheets. ChemistrySelect 1, 5380–5387 (2016)CrossRefGoogle Scholar
  25. 25.
    U. Mogera, A.A. Sagade, S.J. George, G.U. Kulkarni, Ultrafast response humidity sensor using supramolecular nanofibre and its application in monitoring breath humidity and flow. Sci. Rep. 4, 4103 (2014)CrossRefGoogle Scholar
  26. 26.
    Q. Kuang, C. Lao, Z.L. Wang, Z. Xie, L. Zheng, High-sensitivity humidity sensor based on a single SnO2 nanowire. J. Am. Chem. Soc. 129, 6070–6071 (2007)CrossRefGoogle Scholar
  27. 27.
    H. Yin, K. Yu, Z. Zhang, M. Zeng, L. Lou, Z. Zhu, Humidity sensing properties of flower-like VO2(B) and VO2(M). Nanostruct. Electroanal. 23, 1752–1758 (2011)CrossRefGoogle Scholar
  28. 28.
    N. Zhang, K. Yu, Z. Zhu, D. Jiang, Synthesis and humidity sensing properties of feather-like ZnO nanostructures with macroscale in shape. Sens. Actuators, A. 143, 245–250 (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Chetan K. Zankat
    • 1
    Email author
  • Pratik Pataniya
    • 1
  • Mohit Tannarana
    • 1
  • G. K. Solanki
    • 1
  • K. D. Patel
    • 1
  • V. M. Pathak
    • 1
  1. 1.Department of PhysicsSardar Patel UniversityVallabh VidyanagarIndia

Personalised recommendations