Achieving thermally stable supercapacitors with a temperature responsive electrolyte

  • Han Jiang
  • Mark E. RobertsEmail author


Thermally stable electrochemical devices are ideal due to their stabilized performance and longer service life at extreme temperatures. However, ageing in supercapacitors, which is caused by generation of heat induced by high voltage, current, temperature, and aided by temperature induced self-accelerating reactions, plague the performance and lead to shortened service life. Poly(N-isopropylacrylamide) (PNIPAM) has been one of the most studied temperature responsive polymers (TRPs) in the past decades; it has a lower critical solution temperature (LCST) around 32 °C. By integrating PNIPAM into aqueous electrolyte, it was found that once LCST is reached, the specific capacitance of supercapacitors is reduced, which is accredited to drag of ion migration and precipitated polymer chains reside upon electrode surface. The capacitance reduction is even more obvious when the electrolyte solute changed into large size solute potassium ferricyanide. In terms of specific capacitance, comparing to an increase of the control, the PNIPAM integrated systems experienced a decrease under 70 °C. The integration of TRPs into electrochemical systems offers alternative approach to suppress high temperature capacitive reactions and ageing, thus could guarantee longer service life, performance stabilized supercapacitors.



The authors would like to thank Ms. Kim Ivey for assistance with GPC measurement and the Department of Materials Science and Engineering and the Department of Chemical and Biomolecular Engineering of Clemson University for funding support.

Supplementary material

10854_2019_900_MOESM1_ESM.docx (114 kb)
Supplementary material 1 (DOCX 114 KB)


  1. 1.
    P. Simon, Y. Gogotsi, B. Dunn, Where do batteries end and supercapacitors begin? Science 343, 1210–1211 (2014)CrossRefGoogle Scholar
  2. 2.
    Z. Chen, P.-C. Hsu, J. Lopez, Y. Li, J.W.F. To, N. Liu, C. Wang, S.C. Andrews, J. Liu, Y. Cui, Z. Bao, Fast and reversible thermoresponsive polymer switching materials for safer batteries. Nat. Energy 1(1), 15009 (2016)CrossRefGoogle Scholar
  3. 3.
    V. Augustyn, P. Simon, B. Dunn, Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7(5), 1597 (2014)CrossRefGoogle Scholar
  4. 4.
    R. Kötz, P.W. Ruch, D. Cericola, Aging and failure mode of electrochemical double layer capacitors during accelerated constant load tests. J. Power Sources 195(3), 923–928 (2010)CrossRefGoogle Scholar
  5. 5.
    O. Bohlen, J. Kowal, D.U. Sauer, Ageing behaviour of electrochemical double layer capacitors. J. Power Sources 172(1), 468–475 (2007)CrossRefGoogle Scholar
  6. 6.
    O. Bohlen, J. Kowal, S. Dirk Uwe, Ageing behaviour of electrochemical double layer capacitors: part II. Lifetime simulation model for dynamic applications. J. Power Sources 173(1), 626–632 (2007)CrossRefGoogle Scholar
  7. 7.
    P. Azaïs, L. Duclaux, P. Florian, D. Massiot, M.-A. Lillo-Rodenas, A. Linares-Solano, J.-P. Peres, C. Jehoulet, F. Béguin, Causes of supercapacitors ageing in organic electrolyte. J. Power Sources 171(2), 1046–1053 (2007)CrossRefGoogle Scholar
  8. 8.
    M.A. Stuart, W.T. Huck, J. Genzer, M. Muller, C. Ober, M. Stamm, G.B. Sukhorukov, I. Szleifer, V.V. Tsukruk, M. Urban, F. Winnik, S. Zauscher, I. Luzinov, S. Minko, Emerging applications of stimuli-responsive polymer materials. Nat. Mater. 9(2), 101–113 (2010)CrossRefGoogle Scholar
  9. 9.
    X. Deng, Y. Chen, Z. Cheng, K. Deng, Z. Hou, B. Liu, S. Huang, D. Jin, J. Lin, Rational design of a comprehensive cancer therapy platform using temperature-sensitive polymer grafted hollow gold nanospheres: simultaneous chemo/photothermal/photodynamic therapy triggered by a 650 nm laser with enhanced anti-tumor efficacy. Nanoscale 8(12), 6837–6850 (2016)CrossRefGoogle Scholar
  10. 10.
    S. Ashraf, H.-K. Park, H. Park, S.-H. Lee, Snapshot of phase transition in thermoresponsive hydrogel PNIPAM: role in drug delivery and tissue engineering. Macromol. Res. 24(4), 297–304 (2016)CrossRefGoogle Scholar
  11. 11.
    S. Nagata, K. Kokado, K. Sada, Metal-organic framework tethering PNIPAM for ON–OFF controlled release in solution. Chem. Commun. 51(41), 8614–8617 (2015)CrossRefGoogle Scholar
  12. 12.
    X.-Z. Zhang, X.-D. Xu, S.-X. Cheng, R.-X. Zhuo, Strategies to improve the response rate of thermosensitive PNIPAAm hydrogels. Soft Matter 4(3), 385 (2008)CrossRefGoogle Scholar
  13. 13.
    H.G. Schild, Poly(N-isopropylacrylamide): experiment, theory and application. Prog. Polym. Sci. 17(2), 163–249 (1992)CrossRefGoogle Scholar
  14. 14.
    M. Heskins, J.E. Guillet, Solution properties of poly(N-isopropylacrylamide). J. Macromol. Sci.-Chem. 2(8), 1441–1455 (1968)CrossRefGoogle Scholar
  15. 15.
    G. Zhang, C. Wu, Quartz crystal microbalance studies on conformational change of polymer chains at interface. Macromol. Rapid Commun. 30(4–5), 328–335 (2009)CrossRefGoogle Scholar
  16. 16.
    Y. Zhang, S. Furyk, L.B. Sagle, Y. Cho, D.E. Bergbreiter, P.S. Cremer, Effects of Hofmeister anions on the LCST of PNIPAM as a function of molecular weight. J. Phys. Chem. C 111, 8916–8924 (2007)CrossRefGoogle Scholar
  17. 17.
    X. Zhu, C. Yan ,F.M. Winnik, D. Leckband, End-grafted low-molecular-weight PNIPAM does not collapse above the LCST. Langmuir 23, 162–169 (2006)CrossRefGoogle Scholar
  18. 18.
    K.N. Plunkett. X. Zhu, J.S. Moore, D.E. Leckband, PNIPAM chain collapse depends on the molecular weight and grafting density. Langmuir 22, 4259–4266 (2006)CrossRefGoogle Scholar
  19. 19.
    Y. Zhang, S. Furyk, D.E. Bergbreiter, P.S. Cremer, Specific ion effects on the water solubility of macromolecules: PNIPAM and the Hofmeister series. J. Am. Chem. Soc. 127, 14505–14510 (2005)CrossRefGoogle Scholar
  20. 20.
    A. Hijazi, P. Kreckzanik, E. Bideaux, P. Venet, G. Clerc, M. Di Loreto, Thermal network model of supercapacitors stack. IEEE Transac. Ind. Electron. 59 (2):979–987 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Sheeney Haj Ichia, G. Sharabi, I. Willner, Control of the electronic properties of thermosensitive poly(N-isopropylacrylamide) and Au-nano-particle/poly(N-isopropylacrylamide) composite hydrogels upon phase transition. Adv. Func. Mater. 12(1), 27–32 (2002)CrossRefGoogle Scholar
  22. 22.
    Y. Shi, H. Ha, A. Al-Sudani, C.J. Ellison, G. Yu, Thermoplastic elastomer-enabled smart electrolyte for thermoresponsive self-protection of electrochemical energy storage devices. Adv. Mater. 28(36), 7921–7928 (2016)CrossRefGoogle Scholar
  23. 23.
    H. Yang, Z. Liu, B.K. Chandran, J. Deng, J. Yu, D. Qi, W. Li, Y. Tang, C. Zhang, X. Chen, Self-protection of electrochemical storage devices via a thermal reversible sol-gel transition. Adv. Mater. 27(37), 5593–5598 (2015)CrossRefGoogle Scholar
  24. 24.
    J.C. Kelly, D.L. Huber, A.D. Price, M.E. Roberts, Switchable electrolyte properties and redox chemistry in aqueous media based on temperature-responsive polymers. J. Appl. Electrochem. 45(8), 921–930 (2015)CrossRefGoogle Scholar
  25. 25.
    J.C. Kelly, M. Pepin, D.L. Huber, B.C. Bunker, M.E. Roberts, Reversible control of electrochemical properties using thermally-responsive polymer electrolytes. Adv. Mater. 24(7), 886–889 (2012)CrossRefGoogle Scholar
  26. 26.
    J.C. Kelly, R. Gupta, M.E. Roberts, Responsive electrolytes that inhibit electrochemical energy conversion at elevated temperatures. J. Mater. Chem. A 3(7), 4026–4034 (2015)CrossRefGoogle Scholar
  27. 27.
    X. Wang, X. Qiu, C. Wu, Comparison of the coil-to-globule and the globule-to-coil transitions of a single poly(N-isopropylacrylamide) homopolymer chain in water. Macromolecules 31(9), 2972–2976 (1998)CrossRefGoogle Scholar
  28. 28.
    G. Perenlei, T.W. Tee, N.A. Yusof, G.J. Kheng, Voltammetric detection of potassium ferricyanide mediated by multi-walled carbon nanotube/titanium dioxide composite modified glassy carbon electrode. Int. J. Electrochem. Sci. 6, 520–531 (2011)Google Scholar
  29. 29.
    H. Yang, W.R. Leow, X. Chen, Thermal-responsive polymers for enhancing safety of electrochemical storage devices. Adv. Mater. 30, e1704347 (2018)CrossRefGoogle Scholar
  30. 30.
    J. Shen, K. Han, E.J. Martin, Y.Y. Wu, M.C. Kung, C.M. Hayner, K.R. Shull, H.H. Kung, Upper-critical solution temperature (UCST) polymer functionalized graphene oxide as thermally responsive ion permeable membrane for energy storage devices. J. Mater. Chem. A 2(43), 18204–18207 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringClemson UniversityClemsonUSA
  2. 2.Department of Chemical & Biomolecular EngineeringClemson UniversityClemsonUSA

Personalised recommendations