Structural evolution, dielectric and ferroelectric properties of (1-x)Bi0.5Na0.5TiO3-xBa0.3Sr0.7TiO3 ceramics

  • Dongxu Li
  • Zong-Yang ShenEmail author
  • Zhipeng Li
  • Xingcai Wang
  • Wen-Qin Luo
  • Fusheng Song
  • Zhumei Wang
  • Yueming Li


(1 − x)Bi0.5Na0.5TiO3xBa0.3Sr0.7TiO3 (abbreviated as BNT-BST, x = 0.05 ~ 0.40) was prepared by a conventional ceramic processing method and their structural evolution, dielectric and ferroelectric properties were investigated. The structure of the BNT-BST ceramics changes from phase coexistences of Rhombohedral-Tetragonal (x ≤ 0.10) to Tetragonal-Cubic (x ≥ 0.35), across a dominant Tetragonal phase region (0.15 ≤ x ≤ 0.30). By increasing BST content, the grain size of the BNT-BST ceramics slightly decreases, while the temperature Tm of the maximum dielectric constant gradually goes downward from ~ 250 °C to near room temperature. Meanwhile, with the increase of measuring frequency, the Tm increases for the BNT-BST ceramics with x ≥ 0.15, indicating their relaxor ferroelectric characteristics. Room temperature P-E loop test results show that both coercive field Ec and remnant polarization Pr gradually reduce with the increase of x value for relaxor BNT-BST ceramics. Both high peak dielectric constant (εr > 6000 at Tm) and saturated polarization (Ps ~ 30 µC/cm2), as well as tunable remnant polarization Pr are obtained in relaxor BNT-BST ceramics suitable for capacitor candidate materials.



This work was financially supported by National Natural Science Foundation of China (51767010), Science & Technology Key Research Project of Jiangxi Provincial Education Department (GJJ170760) and Graduate Student Innovation Fund of Jiangxi Province (YC2018-S295).


  1. 1.
    W.J. Sarjeant, J. Zirnheld, F.W. MacDougall, J.S. Bowers, N. Clark, I.W. Clelland, R.A. Price, M. Hudis, I. Kohlberg, G. McDuff, I. McNab, S.G. Parler, Jr.J. Prymak, Capacitors—past, present, and future, Handb. Low High Dielectr. Constant. Mater. Appl. 2, 423–491 (1999)Google Scholar
  2. 2.
    C.A. Randall, H. Ogihara, J.R. Kim, G.Y. Yang, C.S. Stringer, S. Trolier-McKinstry, Proceedings of the IEEE Pulsed Power Conference, p346 (2009)Google Scholar
  3. 3.
    M.E. Lines, A.M. Glass, Principles and applications of ferroelectrics and related materials (Oxford University Press, New York, 2004), pp. 241–255Google Scholar
  4. 4.
    L.E. Cross, Ferroelectrics 76, 241–267 (1987)CrossRefGoogle Scholar
  5. 5.
    R.A. Cowley, S.N. Gvasaliya, S.G. Lushnikov, B. Roessli, G.M. Rotaru, Adv. Phys. 60, 229–327 (2011)CrossRefGoogle Scholar
  6. 6.
    K. Uchino, Chap. 3 - Relaxor Ferroelectric-Based Ceramics, Advanced Piezoelectric Materials (2nd edn.) p. 127–153 (2017)Google Scholar
  7. 7.
    F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z. Ye, J. Luo, T.R. Shrout, L.Q. Chen, Nat. Commun. 7, 13807 (2016)CrossRefGoogle Scholar
  8. 8.
    W. Jia, Y. Hou, M. Zheng, Y. Xu, M. Zhu, K. Yang, H. Cheng, S. Sun, J. Xing, IET Nanodielectr. 1, 3–16 (2018)CrossRefGoogle Scholar
  9. 9.
    J. Hao, W. Li, J. Zhai, H. Chen, Mater. Sci. Eng. R 135, 1–57 (2019)CrossRefGoogle Scholar
  10. 10.
    W.P. Cao, W.L. Li, X.F. Dai, T.D. Zhang, J. Sheng, Y.F. Hou, W.D. Fei, J. Eur. Ceram. Soc. 36, 593–600 (2016)CrossRefGoogle Scholar
  11. 11.
    Q. Xu, Z. Song, W. Tang, H. Hao, L. Zhang, M. Appiah, M. Cao, Z. Yao, Z. He, H. Liu, J. Am. Ceram. Soc. 98, 3119–3126 (2015)CrossRefGoogle Scholar
  12. 12.
    G.A. Smolenskii, V.A. Isupov, A.I. Agranovskaya, N.N. Krainik, Sov. Phys. Solid State 2, 2651–2654 (1961)Google Scholar
  13. 13.
    C.S. Tu, I.G. Siny, V.H. Schmidt, Phys. Rev. B 49, 11550–11559 (1994)CrossRefGoogle Scholar
  14. 14.
    S.R. Kanuru, K. Baskar, R. Dhanasekaran, Ceram. Int. 42, 6054–6064 (2016)CrossRefGoogle Scholar
  15. 15.
    A. Sasaki, T. Chiba, Y. Mamiya, E. Otsuki, Jpn. J. Appl. Phys. 38, 5564–5567 (1999)CrossRefGoogle Scholar
  16. 16.
    J. Wang, H. Fan, B. Hu, H. Jiang, J. Mater. Sci.: Mater. Electron. (2018). Google Scholar
  17. 17.
    W. Ma, Y. Zhu, M.A. Marwat, P. Fan, B. Xie, D. Salamon, Z.G. Ye, H. Zhang, J. Mater. Chem. C 7, 281–288 (2019)CrossRefGoogle Scholar
  18. 18.
    M. Acosta, J. Zang, W. Jo, J. Rödel, J. Eur. Ceram. Soc. 32, 4327–4334 (2012)CrossRefGoogle Scholar
  19. 19.
    R. Dittmer, E.M. Anton, W. Jo, H. Simons, J.E. Daniels, M. Hoffman, J. Pokorny, I.M. Reaney, J. Rödel, J. Am. Ceram. Soc. 95, 3519–3524 (2012)CrossRefGoogle Scholar
  20. 20.
    M. Xiao, H. Sun, Y. Wei, L. Li, P. Zhang, J. Mater. Sci.: Mater. Electron. 29, 17689–17694 (2018)Google Scholar
  21. 21.
    Y. Wang, Z.Y. Shen, Y.M. Li, Z.M. Wang, W.Q. Luo, Y. Hong, Ceram. Int. 41, 8252–8256 (2015)CrossRefGoogle Scholar
  22. 22.
    Z.Y. Shen, Y.Y. Yu, Y. Wang, L. Zhang, W.Q. Luo, Z.M. Wang, Y.M. Li, J. Mater. Sci.: Mater. Electron. 29, 1093–1097 (2018)Google Scholar
  23. 23.
    M. Chen, Q. Xu, B.H. Kim, B.K. Ahn, J.H. Ko, W.J. Kang, O.J. Nam, J. Eur. Ceram. Soc. 28, 843–849 (2008)CrossRefGoogle Scholar
  24. 24.
    K. Wang, A. Hussain, W. Jo, J. Rödel, J. Am. Ceram. Soc. 95, 2241–2247 (2012)CrossRefGoogle Scholar
  25. 25.
    V.V. Shvartsman, D.C. Lupascu, J. Am. Ceram. Soc. 95, 1–26 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Energy Storage and Conversion Ceramic Materials Engineering Laboratory of Jiangxi Province, National Light Industry Key Laboratory of Functional Ceramic Materials, School of Materials Science and EngineeringJingdezhen Ceramic InstituteJingdezhenChina
  2. 2.Chengdu Hongming UESTC Electronic New Materials Co., LtdChengduChina

Personalised recommendations