Glass structure, crystallization kinetics and dielectric properties of CeO2-added CaO–B2O3–SiO2 glass system

  • Jiao HanEmail author
  • Yao Xiang
  • Zhiqiang Yao
  • Yiming ZengEmail author
  • Peijia Bai
  • Yunbo Jiang
  • Wen Chen


This work investigated the effects of CeO2 contents on structure, crystallization behavior and dielectric properties of CaO–B2O3–SiO2 glass composition. The MAS-NMR results showed that B occurred as BIIIa, BIIIs and BIV species and Si presented as Q2, Q3 and Q4 units in the glasses. As the increase of CeO2 content, the relative amounts of BIV and BIIIs unit decreased while the BIIIa units increased, and the amounts of Q4 and Q2 units increased while the Q3 unit decreased. With increasing CeO2 content, the value of Tg decreased from 743 °C to 717 °C, the activation energy for CaSiO3 first increased and then decreased. For glass–ceramics samples sintered at 825 °C, all samples had the crystalline phases of CaSiO3, CaB2O4, Ca2SiO4. In addition, the samples with CeO2 content more than 1 mol% had CeO1.695 phase, which changed to be the main crystalline phase when the content of CeO2 increased up to 10 mol%. The εr of the glass–ceramic samples with CeO2 content x ≤ 6 showed an ascend trend in total, and decreased sharply to 4.1 for the sample with x = 10. However, the dielectric loss tan δ would not change significantly with the increasing of CeO2 content. The samples with 1 mol% CeO2 sintered at 825 °C owned εr of 5.4, tan δ of 0.9 × 10− 3, and CTE of 7.8 × 10− 6/K. The results indicated that CaO–B2O3–SiO2 with CeO2 glass–ceramics could be a potential LTCC substrate material.



This work was supported by the fund of the Basic Applied Research Foundation of Yunnan Province (Grant No. 2016FD125, 2016FB083), Key New Product Project of Yunnan Province (Grant No. 2016BA009), Chinese academy of Sciences Key Project (Grant No. KLIFMD201605) and 2017 Kunming Advanced Talent Funding (13020163).


  1. 1.
    Z. Qing, Mater. Lett. 212, 126 (2018)CrossRefGoogle Scholar
  2. 2.
    K. Manu, M.T. Sebastian, Ceram. Int. 42, 1210 (2016)CrossRefGoogle Scholar
  3. 3.
    X. Zhou, E. Li, S. Yang, B. Li, B. Tang, Y. Yuan, S. Zhang, Ceram. Int. 38, 5551 (2012)CrossRefGoogle Scholar
  4. 4.
    H. Zhu, H. Zhou, M. Liu, P. Wei, G. Xu, G. Ning, J. Mater. Sci. Mater. Electron. 20, 1135 (2008)CrossRefGoogle Scholar
  5. 5.
    C.C. Chiang, S.F. Wang, Y.R. Wang, Y.F. Hsu, J. Alloys Compd. 461, 612 (2008)CrossRefGoogle Scholar
  6. 6.
    Y. Lai, Y. Zeng, X. Tang, H. Zhang, J. Han, H. Su, RSC Adv. 6, 93722 (2016)CrossRefGoogle Scholar
  7. 7.
    S.F. Wang, Y.R. Wang, Y.F. Hsu, C.C. Chiang, J. Alloys Compd. 498, 211 (2010)CrossRefGoogle Scholar
  8. 8.
    Y. Xia, Y. Hu, L. Ren, X. Luo, W. Gong, H. Zhou, J. Eur. Ceram. Soc. 38, 253 (2018)CrossRefGoogle Scholar
  9. 9.
    T.H. Lee, S.H. Cho, T.G. Lee, H.T. Kim, I.K. You, S. Nahm, J. Am. Ceram. Soc. 101, 3156 (2018)CrossRefGoogle Scholar
  10. 10.
    J. Han, Y. Lai, Y. Xiang, S. Wu, Y. Xu, Y. Zeng, J. Chen, J. Liu, J. Mater. Sci. Mater. Electron. 28, 6131 (2017)CrossRefGoogle Scholar
  11. 11.
    S. Cetinkaya Colak, I. Akyuz, F. Atay, J. Non-Cryst. Solids 432, 406 (2016)CrossRefGoogle Scholar
  12. 12.
    H. Shao, T. Wang, Q. Zhang, J. Alloys Compd. 484, 2 (2009)CrossRefGoogle Scholar
  13. 13.
    S. Khan, G. Kaur, K. Singh, Ceram. Int. 43, 722 (2017)CrossRefGoogle Scholar
  14. 14.
    J. Han, Y. Lai, Y. Xiang, S. Wu, Y. Zeng, H. Yang, Y. Mao, Y. Yang, RSC Adv. 7, 14709 (2017)CrossRefGoogle Scholar
  15. 15.
    J.Z. Liu, X.F. Wu, N.X. Xu, Q.L. Zhang, H. Yang, J. Mater. Sci. Mater. Electron. 26, 8899 (2015)CrossRefGoogle Scholar
  16. 16.
    J.S. Park, Y. Kim, H. Shin, J.H. Moon, W. Lim, J. Am. Ceram. Soc. 91, 3630 (2008)CrossRefGoogle Scholar
  17. 17.
    Y. Xiang, J. Han, Y. Lai, S. Li, S. Wu, Y. Xu, Y. Zeng, L. Zhou, Z. Huang, J. Mater. Sci. Mater. Electron. 28, 9911 (2017)CrossRefGoogle Scholar
  18. 18.
    J. Wang, W. Chen, L. Luo, J. Alloys Compd. 464, 440 (2008)CrossRefGoogle Scholar
  19. 19.
    S.B. Sohn, S.Y. Choi, J. Non-Cryst. Solids 282, 221 (2001)CrossRefGoogle Scholar
  20. 20.
    T.Y. Liu, G.H. Chen, J. Song, C.I. Yuan, Ceram. Int. 39, 5553 (2013)CrossRefGoogle Scholar
  21. 21.
    S. Sen, Z. Xu, J.F. Stebbins, J. Non-Cryst. Solids 226, 29 (1998)CrossRefGoogle Scholar
  22. 22.
    H.R. Gaddam, J.M.F. Fernandes, Ferreira, RSC Adv. 5, 41066 (2015)CrossRefGoogle Scholar
  23. 23.
    G. Parkinson, D. Holland, M.E. Smith, A.P. Howes, C.R. Scales, J. Phys. Condens. Matter 19, 415114 (2007)CrossRefGoogle Scholar
  24. 24.
    T. Schaller, J.F. Stebbins, M.C. Wilding, J. Non-Cryst. Solids 243, 146 (1999)CrossRefGoogle Scholar
  25. 25.
    M.B. Volf, Chemical Approach to Glass (Elsevier, Amsterdam, 1984)Google Scholar
  26. 26.
    G. El-Damrawi, K. El-Egili, Physica B 299, 180 (2001)CrossRefGoogle Scholar
  27. 27.
    G.J. Mohini, N. Krishnamacharyulu, G. Sahaya Baskaran, P.V. Rao, N. Veeraiah, Appl. Surf. Sci. 287, 46 (2013)CrossRefGoogle Scholar
  28. 28.
    R.C. Lucacel, T. Radu, A.S. Tătar, I. Lupan, O. Ponta, V. Simon, J. Non-Cryst. Solids. 404, 98 (2014)CrossRefGoogle Scholar
  29. 29.
    K. Singh, I. Bala, V. Kumar, Ceram. Int. 35, 3401 (2009)CrossRefGoogle Scholar
  30. 30.
    M. Sitarz, J. Non-Cryst. Solids 357, 1603 (2011)CrossRefGoogle Scholar
  31. 31.
    D. Winterstein-Beckmann, D. Möncke, E.I. Palles, L. Kamitsos, Wondraczek, J. Non-Cryst. Solids 405, 196 (2014)CrossRefGoogle Scholar
  32. 32.
    J.H. Jean, C.R. Chang, C.D. Lei, J. Am. Ceram. Soc. 87, 1244 (2004)CrossRefGoogle Scholar
  33. 33.
    C.R. Chang, J.H. Jean, J. Am. Ceram. Soc. 82, 1725 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Technologies for Comprehensive Utilization of Platinum MetalsKunming Institute of Precious MetalsKunmingPeople’s Republic of China

Personalised recommendations