Modulating the electronic and magnetic properties of the marcasite FeS2 via transition metal atoms doping

  • Xing-Hua Tian
  • Jian-Min ZhangEmail author


First-principles calculations are used to investigate the electronic and magnetic properties of substitutional doping of transition metal (TM) atoms (V, Cr, Mn, Co, Ni, Cu and Zn) on marcasite FeS2 (m-FeS2). It is energetically favorable to combine TM atoms into m-FeS2 under S-rich condition. The electronic properties of m-FeS2 are changed significantly due to the introduced impurity states by TM atoms. Simultaneously, TM atoms doping can induce magnetism in m-FeS2 except Cu and Zn. The magnetism stem from the localized unpaired 3d electrons of TM atoms, a small amount of magnetic moments are induced in the neighboring Fe and S atoms due to the p–d hybridization mechanism. V-, Mn- and Ni-doped m-FeS2 compounds exhibit magnetic semiconducting character, Cr-doped compound display a half-metallic property, while Cu-doped compound shows non-magnetic metallic property, Zn-doped compound behavior as a non-magnetic semiconductor. More interestingly, a single Co-doped compound shows magnetic semiconducting but double Co-doped compound shows half metallic character. In addition, Co- and Cr-doped compounds prefer ferromagnetic state which is important for spintronics.



This research was supported by the Fundamental Research Funds for the Central Universities (Grant No. GK201804001).


  1. 1.
    Q. Mahmood, M. Hassan, N.A. Noor, J. Supercond. Nov. Magn. 30, 1463–1471 (2017)CrossRefGoogle Scholar
  2. 2.
    K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, Rev. Mod. Phys. 82, 1633–1690 (2010)CrossRefGoogle Scholar
  3. 3.
    X. Zhao, T.X. Wang, C.X. Xia, X.Q. Dai, S.Y. Wei, L. Yang, J. Alloys Compd. 698, 611–616 (2017)CrossRefGoogle Scholar
  4. 4.
    K. Dolui, I. Rungger, C.D. Pemmaraju, S. Sanvito, Phys. Rev. B Condens. Matter Mater. Phys. 88, 075420 (2013)CrossRefGoogle Scholar
  5. 5.
    Y.C. Cheng, Z.Y. Zhu, W.B. Mi, Z.B. Guo, U. Schwingenschlögl, Phys. Rev. B Condens. Matter Mater. Phys. 87, 100401 (2013) R)CrossRefGoogle Scholar
  6. 6.
    B.S. Yang, H.L. Zheng, R.L. Han, X.B. Du, Y. Yan, RSC Adv. 4, 54335–54343 (2014)CrossRefGoogle Scholar
  7. 7.
    N. Ramasubramaniam, D. Naveh, Phys. Rev. B Condens. Matter Mater. Phys. 87, 195201 (2013)CrossRefGoogle Scholar
  8. 8.
    R. Mishra, W. Zhou, S.J. Pennycook, S.T. Pantelides, J.C. Idrobo, Phys. Rev. B Condens. Matter Mater. Phys. 88, 144409 (2013)CrossRefGoogle Scholar
  9. 9.
    W.S. Yun, J.D. Lee, Phys. Chem. Chem. Phys. 16, 8990–8996 (2014)CrossRefGoogle Scholar
  10. 10.
    J.M. Zhang, H.L. Zheng, R.L. Han, X.B. Du, Y. Yan, J. Alloys Compd. 647, 75–81 (2015)CrossRefGoogle Scholar
  11. 11.
    J.Y. Kim, J.H. Park, B.G. Park, H.J. Noh, S.J. Oh, J.S. Yang, D.H. Kim, S.D. Bu, T.W. Noh, H.J. Lin, H.H. Hsieh, C.T. Chen, Phys. Rev. Lett. 90, 017401–017404 (2003)CrossRefGoogle Scholar
  12. 12.
    J.D. Bryan, S.M. Heald, S.A. Chambers, D.R. Gamelin, J. Am. Chem. Soc. 126, 11640–11647 (2004)CrossRefGoogle Scholar
  13. 13.
    J.P. Xu, J.F. Wang, Y.B. Lin, X.C. Liu, Z.L. Lu, Z.H. Lu, L.Y. Lv, F.M. Zhang, Y.W. Du, J. Phys. D Appl. Phys. 40, 4757–4760 (2007)CrossRefGoogle Scholar
  14. 14.
    K.A. Griffin, A.B. Pakhomov, C.M. Wang, S.M. Heald, K.M. Krishnan, Phys. Rev. Lett. 94, 157204 (2005)CrossRefGoogle Scholar
  15. 15.
    S. Sharma, S. Chaudhary, S.C. Kashyap, S.K. Sharma, J. Appl. Phys. 109, 083905–083913 (2011)CrossRefGoogle Scholar
  16. 16.
    N.H. Hong, J. Sakai, A. Hassini, Appl. Phys. Lett. 84, 2602–2606 (2004)CrossRefGoogle Scholar
  17. 17.
    S. Berri, M. Ibrir, D. Maouche, M. Attallah, Comput. Condens. Matter 1, 26–31 (2014)CrossRefGoogle Scholar
  18. 18.
    V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Phys. Rev. B 83, 184428 (2011)CrossRefGoogle Scholar
  19. 19.
    G.Y. Gao, L. Hu, K.L. Yao, B. Luo, N. Liu, J. Alloy. Compd. 551, 539–543 (2013)CrossRefGoogle Scholar
  20. 20.
    X. Dai, G. Liu, G.H. Fecher, C. Felser, Y. Li, H. Liu, J. Appl. Phys. 105, 07E901 (2009)CrossRefGoogle Scholar
  21. 21.
    Y. Feng, H. Chen, H.K. Yuan, Y. Zhou, X.R. Chen, J. Mag. Mag. Mater. 378, 7–15 (2015)CrossRefGoogle Scholar
  22. 22.
    S. Shukla, J.W. Ager, Q.H. Xiong, T. Sritharan, Energy Technol. 6, 8–20 (2018)CrossRefGoogle Scholar
  23. 23.
    M.G. Gong, A. Kirkeminde, S.Q. Ren, Sci. Rep. 3, 2092 (2013)CrossRefGoogle Scholar
  24. 24.
    I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323–410 (2004)CrossRefGoogle Scholar
  25. 25.
    J. Xia, J.Q. Jiao, B.L. Dai, W.D. Qiu, S.X. He, W.T. Qiu, P.K. Shen, L.P. Chen, RSC Adv. 3, 6132–6140 (2013)CrossRefGoogle Scholar
  26. 26.
    S. Bae, D. Kim, W. Lee, Appl. Catal. B 134, 93–102 (2013)CrossRefGoogle Scholar
  27. 27.
    M.G. Gong, A. Kirkeminde, N. Kumar, H. Zhao, S.Q. Ren, Chem. Commun. 49, 9260–9262 (2013)CrossRefGoogle Scholar
  28. 28.
    S.L. Liu, M.M. Li, S. Li, H.L. Li, L. Yan, Appl. Surf. Sci. 268, 213–217 (2013)CrossRefGoogle Scholar
  29. 29.
    V.K. Gudelli, V. Kanchana, S. Appalakondaiah, G. Vaitheeswaran, M.C. Valsakumar, J. Phys. Chem. C 117, 21120 (2013)CrossRefGoogle Scholar
  30. 30.
    S. Venkateshalu, P.G. Kumar, P. Kollu, S.K. Jeong, A.N. Grace, Electrochimi. Acta 290, 378–389 (2018)CrossRefGoogle Scholar
  31. 31.
    N.Y. Dzade, N.H. de Leeuw, Phys. Chem. Chem. Phys. 19, 27478–27488 (2017)CrossRefGoogle Scholar
  32. 32.
    C. Sánchez, E. Flores, M. Barawi, J.M. Clamagirand, J.R. Ares, I.J. Ferrer, Solid State Commun. 230, 20–24 (2015)CrossRefGoogle Scholar
  33. 33.
    I.F. Wu, N.Y. Dzade, L. Gao, D.O. Scanlon, Z. Öztürk, N. Hollingsworth, B.M. Weckhuysen, E.J.M. Hensen, N.H. de Leeuw, J.P. Hofmann, Adv. Mater. 28, 9602–9607 (2016)CrossRefGoogle Scholar
  34. 34.
    H.H. Fan, H.H. Li, K.C. Huang, C.Y. Fan, ACS Appl. Mater. Interfaces 9, 10708–10716 (2017)CrossRefGoogle Scholar
  35. 35.
    D.G. Moon, S. Rehan, S.Y. Lim, D. Nam, I. Seo, J. Gwak, H. Cheong, Y.S. Cho, Y. Lee, S. Ahn, Sol. Energy 159, 930–939 (2018)CrossRefGoogle Scholar
  36. 36.
    T.T. Li, Z.X. Guo, X.Y. Li, Z.N. Wu, K. Zhang, H.W. Liu, H.Z. Sun, Y. Liu, H. Zhang, RSC Adv. 5, 98967–98970 (2015)CrossRefGoogle Scholar
  37. 37.
    G. Gao, G. Ding, J. Li, K. Yao, M. Wu, M. Qian, Nanoscale 8, 8986–8994 (2016)CrossRefGoogle Scholar
  38. 38.
    Z.K. Tang, W.W. Liu, D.Y. Zhang, W.M. Lau, L.M. Liu, RSC Adv. 5, 77154–77158 (2015)CrossRefGoogle Scholar
  39. 39.
    I. Khan, J. Hong, Nanotechnology 27, 385701 (2016)CrossRefGoogle Scholar
  40. 40.
    A.N. Andriotis, M. Menon, J. Phys. Condens. Matter. 30, 135803 (2018)CrossRefGoogle Scholar
  41. 41.
    R. Janisch, N.A. Spaldin, Phys. Rev. B Condens. Matter Mater. Phys. 73, 035201 (2006)CrossRefGoogle Scholar
  42. 42.
    I. Saini, M. Kumar, T. Som, Appl. Surf. Sci. 418, 302–307 (2017)CrossRefGoogle Scholar
  43. 43.
    T. Droubay, S.M. Heald, V. Shutthanandan, S. Thevuthasan, S.A. Chambers, J. Osterwalder, J. Appl. Phys. 97, 046103 (2005)CrossRefGoogle Scholar
  44. 44.
    I.Y. Liu, Q.Y. Chen, Y. Huang, C. Cao, Y. He, Superlattices Microst. 100, 131–141 (2016)CrossRefGoogle Scholar
  45. 45.
    W.Y. Yu, Z.L. Zhu, C.Y. Niu, C. Li, J.H. Cho, Y. Jia, Nanoscale Res. Lett. 11, 77 (2016)CrossRefGoogle Scholar
  46. 46.
    I. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)CrossRefGoogle Scholar
  47. 47.
    I. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)CrossRefGoogle Scholar
  48. 48.
    M. Bibes, A. Barthelemy, IEEE Trans. Electron Devices 54, 1003–1023 (2007)CrossRefGoogle Scholar
  49. 49.
    I. Ren, H. Zhang, X. Cheng, Int. J. Quantum Chem. 113, 2243–2250 (2013)CrossRefGoogle Scholar
  50. 50.
    I.N. Apostolova, A.T. Apostolov, S.G. Bahoosh, J.M. Wesselinowa, J. Appl. Phys. 113, 203904 (2013)CrossRefGoogle Scholar
  51. 51.
    B. Li, T. Xing, M.Z. Zhong, L. Huang, N. Lei, J. Zhang, J.B. Li, Z.M. Wei, Nat. Commun. 8, 1958 (2017)CrossRefGoogle Scholar
  52. 52.
    S. Dong, X. Liu, X. Li, V. Kanzyuba, T. Yoo, S. Rouvimov, S. Vishwanath, H.G. Xing, D. Jena, M. Dobrowolska, J.K. Furdyna, APL Mater. 4, 032601 (2016)CrossRefGoogle Scholar
  53. 53.
    X.H. Tian, J.M. Zhang, J. Phys. Chem. Solids 121, 285–291 (2018)CrossRefGoogle Scholar
  54. 54.
    G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993)CrossRefGoogle Scholar
  55. 55.
    G. Kresse, J. Hafner, Phys. Rev. B 49, 14251–14269 (1994)CrossRefGoogle Scholar
  56. 56.
    G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
  57. 57.
    G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169–11186 (1996)CrossRefGoogle Scholar
  58. 58.
    I.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
  59. 59.
    A. Rohrbach, J. Hafner, G. Kresse, J. Phys. Condens. Matter. 15, 979 (2003)CrossRefGoogle Scholar
  60. 60.
    B. Himmetoglu, A. Floris, S. de Gironcoli, M. Cococcioni, Int. J. Quantum Chem. 114, 14–49 (2014)CrossRefGoogle Scholar
  61. 61.
    V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Condens. Matter. 9, 767–808 (1997)CrossRefGoogle Scholar
  62. 62.
    G. Kresse, D. Joubert, Phys. Rev. B 59, 1758–1775 (1999)CrossRefGoogle Scholar
  63. 63.
    H.J. Monkhorst, J.D. Pack, Phys. Rev. B Solid State 13, 5188–5192 (1976)CrossRefGoogle Scholar
  64. 64.
    I.S. Schmøkel, L. Bjerg, S. Cenedese, M.R.V. Jørgensen, Y.S. Chen, J. Overgaarda, B.B. Iversen, Chem. Sci. 5, 1408–1421 (2014)CrossRefGoogle Scholar
  65. 65.
    I.J. Buerger, Z. Kristallogr, Cryst. Mater. 97, 504–513 (1937)Google Scholar
  66. 66.
    G. Brostigen, A. Kjekshus, C. Romming, Acta Chem. Scand. 27, 2791–2796 (1973)CrossRefGoogle Scholar
  67. 67.
    I. Rieder, J.C. Crelling, O. Sustai, M. Drabek, Z. Weiss, M. Klementova, Inter. J. Coal Geol. 71, 115–121 (2007)CrossRefGoogle Scholar
  68. 68.
    R.D. Shannon, Acta. Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
  69. 69.
    I. Du, C.X. Xia, Y.P. An, T.X. Wang, Y. Jia, J. Mater. Sci. 51, 9504–9513 (2016)CrossRefGoogle Scholar
  70. 70.
    R. Sun, M.K.Y. Chan, G. Ceder, Phys. Rev. B Condens. Matter Mater. Phys. 83, 235311 (2011)CrossRefGoogle Scholar
  71. 71.
    T. Schena, G. Bihlmayer, S. Blügel, Phys. Rev. B 88, 235203 (2013)CrossRefGoogle Scholar
  72. 72.
    I.I. Mazin, Appl. Phys. Lett. 77, 3000–3002 (2000)CrossRefGoogle Scholar
  73. 73.
    S.F. Cheng, G.T. Woods, K. Bussmann, I.I. Mazin, R.J. Soulen Jr., E.E. Carpenter, B.N. Das, P. Lubits, J. Appl. Phys. 93, 6847–6849 (2003)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Physics and Information TechnologyShaanxi Normal UniversityXianPeople’s Republic of China
  2. 2.School of ScienceNingxia Medical UniversityYinchuanPeople’s Republic of China

Personalised recommendations