Modulating the electronic and magnetic properties of the marcasite FeS2 via transition metal atoms doping
Abstract
First-principles calculations are used to investigate the electronic and magnetic properties of substitutional doping of transition metal (TM) atoms (V, Cr, Mn, Co, Ni, Cu and Zn) on marcasite FeS2 (m-FeS2). It is energetically favorable to combine TM atoms into m-FeS2 under S-rich condition. The electronic properties of m-FeS2 are changed significantly due to the introduced impurity states by TM atoms. Simultaneously, TM atoms doping can induce magnetism in m-FeS2 except Cu and Zn. The magnetism stem from the localized unpaired 3d electrons of TM atoms, a small amount of magnetic moments are induced in the neighboring Fe and S atoms due to the p–d hybridization mechanism. V-, Mn- and Ni-doped m-FeS2 compounds exhibit magnetic semiconducting character, Cr-doped compound display a half-metallic property, while Cu-doped compound shows non-magnetic metallic property, Zn-doped compound behavior as a non-magnetic semiconductor. More interestingly, a single Co-doped compound shows magnetic semiconducting but double Co-doped compound shows half metallic character. In addition, Co- and Cr-doped compounds prefer ferromagnetic state which is important for spintronics.
Notes
Acknowledgements
This research was supported by the Fundamental Research Funds for the Central Universities (Grant No. GK201804001).
References
- 1.Q. Mahmood, M. Hassan, N.A. Noor, J. Supercond. Nov. Magn. 30, 1463–1471 (2017)CrossRefGoogle Scholar
- 2.K. Sato, L. Bergqvist, J. Kudrnovský, P.H. Dederichs, O. Eriksson, I. Turek, B. Sanyal, G. Bouzerar, H. Katayama-Yoshida, V.A. Dinh, T. Fukushima, H. Kizaki, R. Zeller, Rev. Mod. Phys. 82, 1633–1690 (2010)CrossRefGoogle Scholar
- 3.X. Zhao, T.X. Wang, C.X. Xia, X.Q. Dai, S.Y. Wei, L. Yang, J. Alloys Compd. 698, 611–616 (2017)CrossRefGoogle Scholar
- 4.K. Dolui, I. Rungger, C.D. Pemmaraju, S. Sanvito, Phys. Rev. B Condens. Matter Mater. Phys. 88, 075420 (2013)CrossRefGoogle Scholar
- 5.Y.C. Cheng, Z.Y. Zhu, W.B. Mi, Z.B. Guo, U. Schwingenschlögl, Phys. Rev. B Condens. Matter Mater. Phys. 87, 100401 (2013) R)CrossRefGoogle Scholar
- 6.B.S. Yang, H.L. Zheng, R.L. Han, X.B. Du, Y. Yan, RSC Adv. 4, 54335–54343 (2014)CrossRefGoogle Scholar
- 7.N. Ramasubramaniam, D. Naveh, Phys. Rev. B Condens. Matter Mater. Phys. 87, 195201 (2013)CrossRefGoogle Scholar
- 8.R. Mishra, W. Zhou, S.J. Pennycook, S.T. Pantelides, J.C. Idrobo, Phys. Rev. B Condens. Matter Mater. Phys. 88, 144409 (2013)CrossRefGoogle Scholar
- 9.W.S. Yun, J.D. Lee, Phys. Chem. Chem. Phys. 16, 8990–8996 (2014)CrossRefGoogle Scholar
- 10.J.M. Zhang, H.L. Zheng, R.L. Han, X.B. Du, Y. Yan, J. Alloys Compd. 647, 75–81 (2015)CrossRefGoogle Scholar
- 11.J.Y. Kim, J.H. Park, B.G. Park, H.J. Noh, S.J. Oh, J.S. Yang, D.H. Kim, S.D. Bu, T.W. Noh, H.J. Lin, H.H. Hsieh, C.T. Chen, Phys. Rev. Lett. 90, 017401–017404 (2003)CrossRefGoogle Scholar
- 12.J.D. Bryan, S.M. Heald, S.A. Chambers, D.R. Gamelin, J. Am. Chem. Soc. 126, 11640–11647 (2004)CrossRefGoogle Scholar
- 13.J.P. Xu, J.F. Wang, Y.B. Lin, X.C. Liu, Z.L. Lu, Z.H. Lu, L.Y. Lv, F.M. Zhang, Y.W. Du, J. Phys. D Appl. Phys. 40, 4757–4760 (2007)CrossRefGoogle Scholar
- 14.K.A. Griffin, A.B. Pakhomov, C.M. Wang, S.M. Heald, K.M. Krishnan, Phys. Rev. Lett. 94, 157204 (2005)CrossRefGoogle Scholar
- 15.S. Sharma, S. Chaudhary, S.C. Kashyap, S.K. Sharma, J. Appl. Phys. 109, 083905–083913 (2011)CrossRefGoogle Scholar
- 16.N.H. Hong, J. Sakai, A. Hassini, Appl. Phys. Lett. 84, 2602–2606 (2004)CrossRefGoogle Scholar
- 17.S. Berri, M. Ibrir, D. Maouche, M. Attallah, Comput. Condens. Matter 1, 26–31 (2014)CrossRefGoogle Scholar
- 18.V. Alijani, J. Winterlik, G.H. Fecher, S.S. Naghavi, C. Felser, Phys. Rev. B 83, 184428 (2011)CrossRefGoogle Scholar
- 19.G.Y. Gao, L. Hu, K.L. Yao, B. Luo, N. Liu, J. Alloy. Compd. 551, 539–543 (2013)CrossRefGoogle Scholar
- 20.X. Dai, G. Liu, G.H. Fecher, C. Felser, Y. Li, H. Liu, J. Appl. Phys. 105, 07E901 (2009)CrossRefGoogle Scholar
- 21.Y. Feng, H. Chen, H.K. Yuan, Y. Zhou, X.R. Chen, J. Mag. Mag. Mater. 378, 7–15 (2015)CrossRefGoogle Scholar
- 22.S. Shukla, J.W. Ager, Q.H. Xiong, T. Sritharan, Energy Technol. 6, 8–20 (2018)CrossRefGoogle Scholar
- 23.M.G. Gong, A. Kirkeminde, S.Q. Ren, Sci. Rep. 3, 2092 (2013)CrossRefGoogle Scholar
- 24.I. Zutic, J. Fabian, S. Das Sarma, Rev. Mod. Phys. 76, 323–410 (2004)CrossRefGoogle Scholar
- 25.J. Xia, J.Q. Jiao, B.L. Dai, W.D. Qiu, S.X. He, W.T. Qiu, P.K. Shen, L.P. Chen, RSC Adv. 3, 6132–6140 (2013)CrossRefGoogle Scholar
- 26.S. Bae, D. Kim, W. Lee, Appl. Catal. B 134, 93–102 (2013)CrossRefGoogle Scholar
- 27.M.G. Gong, A. Kirkeminde, N. Kumar, H. Zhao, S.Q. Ren, Chem. Commun. 49, 9260–9262 (2013)CrossRefGoogle Scholar
- 28.S.L. Liu, M.M. Li, S. Li, H.L. Li, L. Yan, Appl. Surf. Sci. 268, 213–217 (2013)CrossRefGoogle Scholar
- 29.V.K. Gudelli, V. Kanchana, S. Appalakondaiah, G. Vaitheeswaran, M.C. Valsakumar, J. Phys. Chem. C 117, 21120 (2013)CrossRefGoogle Scholar
- 30.S. Venkateshalu, P.G. Kumar, P. Kollu, S.K. Jeong, A.N. Grace, Electrochimi. Acta 290, 378–389 (2018)CrossRefGoogle Scholar
- 31.N.Y. Dzade, N.H. de Leeuw, Phys. Chem. Chem. Phys. 19, 27478–27488 (2017)CrossRefGoogle Scholar
- 32.C. Sánchez, E. Flores, M. Barawi, J.M. Clamagirand, J.R. Ares, I.J. Ferrer, Solid State Commun. 230, 20–24 (2015)CrossRefGoogle Scholar
- 33.I.F. Wu, N.Y. Dzade, L. Gao, D.O. Scanlon, Z. Öztürk, N. Hollingsworth, B.M. Weckhuysen, E.J.M. Hensen, N.H. de Leeuw, J.P. Hofmann, Adv. Mater. 28, 9602–9607 (2016)CrossRefGoogle Scholar
- 34.H.H. Fan, H.H. Li, K.C. Huang, C.Y. Fan, ACS Appl. Mater. Interfaces 9, 10708–10716 (2017)CrossRefGoogle Scholar
- 35.D.G. Moon, S. Rehan, S.Y. Lim, D. Nam, I. Seo, J. Gwak, H. Cheong, Y.S. Cho, Y. Lee, S. Ahn, Sol. Energy 159, 930–939 (2018)CrossRefGoogle Scholar
- 36.T.T. Li, Z.X. Guo, X.Y. Li, Z.N. Wu, K. Zhang, H.W. Liu, H.Z. Sun, Y. Liu, H. Zhang, RSC Adv. 5, 98967–98970 (2015)CrossRefGoogle Scholar
- 37.G. Gao, G. Ding, J. Li, K. Yao, M. Wu, M. Qian, Nanoscale 8, 8986–8994 (2016)CrossRefGoogle Scholar
- 38.Z.K. Tang, W.W. Liu, D.Y. Zhang, W.M. Lau, L.M. Liu, RSC Adv. 5, 77154–77158 (2015)CrossRefGoogle Scholar
- 39.I. Khan, J. Hong, Nanotechnology 27, 385701 (2016)CrossRefGoogle Scholar
- 40.A.N. Andriotis, M. Menon, J. Phys. Condens. Matter. 30, 135803 (2018)CrossRefGoogle Scholar
- 41.R. Janisch, N.A. Spaldin, Phys. Rev. B Condens. Matter Mater. Phys. 73, 035201 (2006)CrossRefGoogle Scholar
- 42.I. Saini, M. Kumar, T. Som, Appl. Surf. Sci. 418, 302–307 (2017)CrossRefGoogle Scholar
- 43.T. Droubay, S.M. Heald, V. Shutthanandan, S. Thevuthasan, S.A. Chambers, J. Osterwalder, J. Appl. Phys. 97, 046103 (2005)CrossRefGoogle Scholar
- 44.I.Y. Liu, Q.Y. Chen, Y. Huang, C. Cao, Y. He, Superlattices Microst. 100, 131–141 (2016)CrossRefGoogle Scholar
- 45.W.Y. Yu, Z.L. Zhu, C.Y. Niu, C. Li, J.H. Cho, Y. Jia, Nanoscale Res. Lett. 11, 77 (2016)CrossRefGoogle Scholar
- 46.I. Ueda, H. Tabata, T. Kawai, Appl. Phys. Lett. 79, 988 (2001)CrossRefGoogle Scholar
- 47.I. Venkatesan, C.B. Fitzgerald, J.G. Lunney, J.M.D. Coey, Phys. Rev. Lett. 93, 177206 (2004)CrossRefGoogle Scholar
- 48.M. Bibes, A. Barthelemy, IEEE Trans. Electron Devices 54, 1003–1023 (2007)CrossRefGoogle Scholar
- 49.I. Ren, H. Zhang, X. Cheng, Int. J. Quantum Chem. 113, 2243–2250 (2013)CrossRefGoogle Scholar
- 50.I.N. Apostolova, A.T. Apostolov, S.G. Bahoosh, J.M. Wesselinowa, J. Appl. Phys. 113, 203904 (2013)CrossRefGoogle Scholar
- 51.B. Li, T. Xing, M.Z. Zhong, L. Huang, N. Lei, J. Zhang, J.B. Li, Z.M. Wei, Nat. Commun. 8, 1958 (2017)CrossRefGoogle Scholar
- 52.S. Dong, X. Liu, X. Li, V. Kanzyuba, T. Yoo, S. Rouvimov, S. Vishwanath, H.G. Xing, D. Jena, M. Dobrowolska, J.K. Furdyna, APL Mater. 4, 032601 (2016)CrossRefGoogle Scholar
- 53.X.H. Tian, J.M. Zhang, J. Phys. Chem. Solids 121, 285–291 (2018)CrossRefGoogle Scholar
- 54.G. Kresse, J. Hafner, Phys. Rev. B 47, 558–561 (1993)CrossRefGoogle Scholar
- 55.G. Kresse, J. Hafner, Phys. Rev. B 49, 14251–14269 (1994)CrossRefGoogle Scholar
- 56.G. Kresse, J. Furthmüller, Comput. Mater. Sci. 6, 15–50 (1996)CrossRefGoogle Scholar
- 57.G. Kresse, J. Furthmüller, Phys. Rev. B 54, 11169–11186 (1996)CrossRefGoogle Scholar
- 58.I.P. Perdew, K. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)CrossRefGoogle Scholar
- 59.A. Rohrbach, J. Hafner, G. Kresse, J. Phys. Condens. Matter. 15, 979 (2003)CrossRefGoogle Scholar
- 60.B. Himmetoglu, A. Floris, S. de Gironcoli, M. Cococcioni, Int. J. Quantum Chem. 114, 14–49 (2014)CrossRefGoogle Scholar
- 61.V.I. Anisimov, F. Aryasetiawan, A.I. Lichtenstein, J. Phys. Condens. Matter. 9, 767–808 (1997)CrossRefGoogle Scholar
- 62.G. Kresse, D. Joubert, Phys. Rev. B 59, 1758–1775 (1999)CrossRefGoogle Scholar
- 63.H.J. Monkhorst, J.D. Pack, Phys. Rev. B Solid State 13, 5188–5192 (1976)CrossRefGoogle Scholar
- 64.I.S. Schmøkel, L. Bjerg, S. Cenedese, M.R.V. Jørgensen, Y.S. Chen, J. Overgaarda, B.B. Iversen, Chem. Sci. 5, 1408–1421 (2014)CrossRefGoogle Scholar
- 65.I.J. Buerger, Z. Kristallogr, Cryst. Mater. 97, 504–513 (1937)Google Scholar
- 66.G. Brostigen, A. Kjekshus, C. Romming, Acta Chem. Scand. 27, 2791–2796 (1973)CrossRefGoogle Scholar
- 67.I. Rieder, J.C. Crelling, O. Sustai, M. Drabek, Z. Weiss, M. Klementova, Inter. J. Coal Geol. 71, 115–121 (2007)CrossRefGoogle Scholar
- 68.R.D. Shannon, Acta. Cryst. A 32, 751–767 (1976)CrossRefGoogle Scholar
- 69.I. Du, C.X. Xia, Y.P. An, T.X. Wang, Y. Jia, J. Mater. Sci. 51, 9504–9513 (2016)CrossRefGoogle Scholar
- 70.R. Sun, M.K.Y. Chan, G. Ceder, Phys. Rev. B Condens. Matter Mater. Phys. 83, 235311 (2011)CrossRefGoogle Scholar
- 71.T. Schena, G. Bihlmayer, S. Blügel, Phys. Rev. B 88, 235203 (2013)CrossRefGoogle Scholar
- 72.I.I. Mazin, Appl. Phys. Lett. 77, 3000–3002 (2000)CrossRefGoogle Scholar
- 73.S.F. Cheng, G.T. Woods, K. Bussmann, I.I. Mazin, R.J. Soulen Jr., E.E. Carpenter, B.N. Das, P. Lubits, J. Appl. Phys. 93, 6847–6849 (2003)CrossRefGoogle Scholar