Advertisement

Performance assessment of Pr1−xSrxCo0.8Cu0.2O3−δ perovskite oxides as cathode material for solid oxide fuel cells with Ce0.8Sm0.2O1.9 electrolyte

  • Sanlong Wang
  • Xiangwei Meng
  • Jinghai YangEmail author
  • Lili Yang
  • Lizhong Wang
  • Mingxing Song
  • Yiming Zhou
  • Shiquan LüEmail author
Article

Abstract

In this paper, Pr1−xSrxCo0.8Cu0.2O3−δ (x = 0.2, 0.3, 0.4, 0.5, 0.6) cathode material is investigated for intermediate-temperature solid oxide fuel cells (IT-SOFCs). Pr1−xSrxCo0.8Cu0.2O3−δ oxides are prepared by the EDTA-citrate complexing method. XRD results show that there is a structural change from orthorhombic (x = 0.2 and 0.3) to cubic (x = 0.4, 0.5 and 0.6) in Pr1−xSrxCo0.8Cu0.2O3−δ system. The electrical conductivities of all the samples are all higher than 523 S cm−1 between 500 and 800 °C. The semiconductor-to-metal conductivity transition takes place at around x = 0.4. In order to further reduce thermal expansion coefficients (TECs) and improve electrochemical performance of the Pr1−xSrxCo0.8Cu0.2O3−δ cathode, we fabricate Pr0.5Sr0.5Co0.8Cu0.2O3−δ–x wt% Ce0.8Sm0.2O1.9 (PSCC–xSDC, x = 20–60) composite cathodes. In PSCC–xSDC electrode, the TEC and polarization resistance (Rp) both decrease with the addition of SDC. The PSCC–50SDC composite cathode has the lowest Rp. The lowest Rp 0.029 Ω cm2 is obtained at 800 °C for PSCC–50SDC electrode. Subsequently, we fabricate SDC (300 µm thick) electrolyte-supported fuel cell with PSCC–50SDC cathodes. The maximum power densities is 428 mW cm−2 at 800 °C. The present results demonstrate that PSCC–50SDC composite is a promising candidate cathode for IT-SOFCs.

Notes

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 61605059 and 21701047), Program for the development of Science and Technology of Jilin province (Nos. 20180414008GH, 20180519016JH and 20180520191JH), The 13th Five-year Program for Science and Technology of Education Department of Jilin Province (Nos. JJKH20170372KJ and JJKH20180784KJ), Program for the development of Science and Technology of Siping city (No. 2017055), Open Project of Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of Education, Jilin Nomal University (No. 2016002) and Open Project of the State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences (No. RERU2017013).

References

  1. 1.
    N.Q. Minh, Solid oxide fuel cell technology-features and applications. Solid State Ionics. 174, 271–277 (2004)CrossRefGoogle Scholar
  2. 2.
    D.J.L. Brett, A. Atkinson, N.P. Brandon, S.J. Skinner, Intermediate temperature solid oxide fuel cells. Chem. Soc. Rev. 37, 1568–1578 (2008)CrossRefGoogle Scholar
  3. 3.
    N.P. Brandon, S. Skinner, B.C.H. Steele, Recent advances in materials for fuel cells. Annu. Rev. Mater. Res. 33, 183–213 (2003)CrossRefGoogle Scholar
  4. 4.
    R. Li, G. Chen, K. Wu, Y.H. Cheng, La0.8Sr1.2CoO4 + δ-CGO composite as cathode on La0.9Sr0.1Ga0.8Mg0.2O3–δ electrolyte for intermediate temperature solid oxide fuel cells. J. Power Sourc. 232, 332–337 (2013)CrossRefGoogle Scholar
  5. 5.
    R. Li, D. Wang, L. Ge, S. He, H. Chen, L. Guo, Effect of Bi2O3 on the electrochemical performance of LaBaCo2O5 + δ cathode for intermediate-temperature solid oxide fuel cells. Ceram. Int. 40, 2599–2603 (2014)CrossRefGoogle Scholar
  6. 6.
    E. Koep, D.S. Mebane, R. Das, C. Compson, M. Liu, Electrochem. Solid-State Lett. 8, A592–A595 (2005)CrossRefGoogle Scholar
  7. 7.
    M.J. Jørgensen, S. Primdahl, C. Bagger, M. Mogensen, Effect of sintering temperature on microstructure and performance of LSM–YSZ composite cathodes. Solid State Ionics 139, 1–11 (2001)CrossRefGoogle Scholar
  8. 8.
    S.B. Adler, J.A. Lane, B.C.H. Steele, Electrode kinetics of porous mixed-conducting oxygen electrodes. J. Electrochem. Soc. 143, 3554–3564 (1996)CrossRefGoogle Scholar
  9. 9.
    H. Fukunaga, M. Koyama, N. Takahashi, C. Wen, K. Yamada Reaction model of dense Sm0.5Sr0.5CoO3 as SOFC cathode. Solid State Ionics 132, 279–285 (2000)CrossRefGoogle Scholar
  10. 10.
    Z.P. Shao, S.M. Haile, A high-performance cathode for the next generation of solid oxide fuel cells. Nature 431, 170–173 (2004)CrossRefGoogle Scholar
  11. 11.
    K. Yasumoto, Y. Inagaki, M. Shiono, M. Dokiya, An (La,Sr)(Co,Cu)O3–δ cathode for reduced temperature SOFCs. Solid State Ionics 148, 545–549 (2002)CrossRefGoogle Scholar
  12. 12.
    T. Ishihara, T. Kudo, H. Matsuda, Y. Takita, Doped PrMnO3 perovskite oxide as a new cathode of solid oxide fuel cells for low temperature operation. J. Electrochem. Soc. 142, 1519–1524 (1995)CrossRefGoogle Scholar
  13. 13.
    L. Cong, T. He, Y. Ji, P. Guan, Y. Huang, W. Su, Synthesis and characterization of IT-electrolyte with perovskite structure La0.8Sr0.2Ga0.85Mg0.15O3–δ by glycine–nitrate combustion method. J. Alloys Compd. 348, 325–331 (2003)CrossRefGoogle Scholar
  14. 14.
    H.C. Yu, K.Z. Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sources 133, 162–168 (2004)CrossRefGoogle Scholar
  15. 15.
    K. Vidal, L.M. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M.L. Nó, T. Rojo, A. Laresgoiti, M.I. Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRefGoogle Scholar
  16. 16.
    L.W. Tai, M.M. Nasrallah, H.U. Anderson, D.M. Sparlin, S.R. Sehlin, Structure and electrical properties of La1–xSrxCo1–yFeyO3. Part 2. The system La1–xSrxCo0.2Fe0.8–O3. Solid State Ionics 76, 273–283 (1995)CrossRefGoogle Scholar
  17. 17.
    F.J. Jin, Y. Shen, R. Wang, T.M. He, Double-perovskite PrBaCo2/3Fe2/3Cu2/3O5 + δ as cathode material for intermediate temperature solid-oxide fuel cells. J. Power Sourc. 234, 244–251 (2013)CrossRefGoogle Scholar
  18. 18.
    G.Z. Xing, J.B. Yi, J.G. Tao, T. Liu, L.M. Wong, Z. Zhang, G.P. Li, S.J. Wang, J. Ding, T.C. Sum, C.H.A. Huan, T. Wu, Comparative study of room-temperature ferromagnetism in Cu-Doped ZnO nanowires enhanced by structural inhomogeneity. Adv. Mater. 20, 3521–3527 (2008)CrossRefGoogle Scholar
  19. 19.
    G.Z. Xing, J.B. Yi, D.D. Wang, L. Liao, T. Yu, Z.X. Shen, C.H.A. Huan, T.C. Sum, J. Ding, T. Wu, Strong correlation between ferromagnetism and oxygen deficiency in Cr-doped In2O3–δ nanostructures. Physical Review B 79, 174406 (2009)CrossRefGoogle Scholar
  20. 20.
    H.W. Brinks, H. Fjellvåg, A. Kjekshus, B.C. Hauback, Structure and magnetism of Pr1–xSrxFeO3–δ. J. Solid State Chem. 150, 149–233 (2000)CrossRefGoogle Scholar
  21. 21.
    J. Piao, K. Sun, N. Zhang, X. Chen, S. Xu, D. Zhou, Preparation and characterization of Pr1–xSrxFeO3 cathode material for intermediate temperature solid oxide fuel cells. J. Power Sourc. 172, 633–640 (2007)CrossRefGoogle Scholar
  22. 22.
    E. Boehm, J.M. Bassat, M.C. Steil, P. Dordor, F. Mauvy, J.C. Grenier, Oxygen transport properties of La2Ni1–xCuxO4+δ mixed conducting oxides. Solid State Sci. 5, 973–981 (2003)CrossRefGoogle Scholar
  23. 23.
    H. Lv, Y. Wu, B. Huang, B. Zhao, K. Hu, Structure and electrochemical properties of Sm0.5Sr0.5Co1–xFexO3–δ cathodes for solid oxide fuel cells. Solid State Ionics 177, 901–906 (2006)CrossRefGoogle Scholar
  24. 24.
    H. Takahashi, F. Munakata, M. Yamanaka, Ab initio study of the electronic structures in LaCoO3–SrCoO3 systems. Phys. Rev. B 57, 15211 (1998)CrossRefGoogle Scholar
  25. 25.
    K.T. Lee, A. Manthiram, LaSr3Fe3–yCoyO10–δ (0 ≤ y ≤ 1.5) intergrowth oxide cathodes for intermediate temperature solid oxide fuel cells. Chem. Mater. 18, 1621–1626 (2006)CrossRefGoogle Scholar
  26. 26.
    M. Karmele Vidal, L. Rodríguez-Martínez, L. Ortega-San-Martín, E. Díez-Linaza, M. Luisa Nó, T. Rojo, A. Laresgoiti, M. Isabel Arriortua, Isolating the effect of doping in the structure and conductivity of (Ln1–xMx)FeO3–δ perovskites. Solid State Ionics 178, 1310–1316 (2007)CrossRefGoogle Scholar
  27. 27.
    T.Z. Jiang, Z.H. Wang, B.Y. Ren, J.S. Qiao, W. Sun, K.N. Sun, Compositionally continuously graded cathode layers of (Ba0.5Sr0.5)(Fe0.91Al0.09)O3–δ–Gd0.1Ce0.9O2 by wet powder spraying technique for solid oxide fuel cells. J. Power Sources 247, 858–864 (2014)CrossRefGoogle Scholar
  28. 28.
    G.Z. Xing, Y. Wang, J.I. Wong, Y.M. Shi, Z.X. Huang, S. Li, H.Y. Yang, Hybrid CuO/SnO2 nanocomposites: towards cost-effective and high performance binder free lithium ion batteries anode materials. Appl. Phys. Lett. 105, 143905 (2014)CrossRefGoogle Scholar
  29. 29.
    S.B. Adler, Limitations of charge-transfer models for mixed-conducting oxygen electrodes. Solid State Ionics 135, 603–612 (2000)CrossRefGoogle Scholar
  30. 30.
    S.Y. Li, Z. Lü, B. Wei, X.Q. Huang, J.P. Miao, Z.G. Liu Performances of Ba0.5Sr0.5Co0.6Fe0.4O3–δ–Ce0.8Sm0.2O1.9 composite cathode materials for IT-SOFC. J. Alloys Compd. 448, 116–121 (2008)CrossRefGoogle Scholar
  31. 31.
    S. Lü, G. Long, Y. Ji, X. Meng, C. Sun, Characterization of SmBaCoFeO5 + δ-Ce0.9Gd0.1O1.95 composite cathodes for intermediate-temperature solid oxide fuel cells. Int. J. Hydrogen Energy 35, 7930–7935 (2010)CrossRefGoogle Scholar
  32. 32.
    Y. Ji, H. Wang, H. Zhang, Gd0.8Sr0.2CoO3 – δ–Sm0.1Ce0.9O1.95 composite cathode for intermediate temperature solid oxide fuel cells. Mater. Res. Bull. 85, 30–34 (2017)CrossRefGoogle Scholar
  33. 33.
    B. Wei, Z. Lü, X. Huang, M. Liu, N. Li, W. Su, J. Power Sourc. 176, 1–8 (2008)CrossRefGoogle Scholar
  34. 34.
    K.T. Lee, A. Manthiram, Effect of cation doping on the physical properties and electrochemical performance of Nd0.6Sr0.4Co0.8M0.2O3–δ(M = Ti, Cr, Mn, Fe, Co, and Cu) cathodes. Solid State Ionics 178, 995–1000 (2007)CrossRefGoogle Scholar
  35. 35.
    Ho-ChiehY.Kuan-Zong Fung, Electrode properties of La1–xSrxCuO2.5–δ as new cathode materials for intermediate-temperature SOFCs. J. Power Sourc. 133, 162–168 (2004)CrossRefGoogle Scholar
  36. 36.
    M.M. Li, J.G. Cheng, Y. Gan, S.S. Li, B.B. He, W.Z. Sun, Effects of strontium doping on the structure, oxygen nonstoichiometry and electrochemical performance of Pr2–xSrxNi0.6Cu0.4O4 + δ (0.1 ≤ x ≤ 0.5) cathode materials. J. Power Sourc. 275, 151–158 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Sanlong Wang
    • 1
  • Xiangwei Meng
    • 1
  • Jinghai Yang
    • 1
    Email author
  • Lili Yang
    • 1
  • Lizhong Wang
    • 2
  • Mingxing Song
    • 2
  • Yiming Zhou
    • 3
  • Shiquan Lü
    • 1
    Email author
  1. 1.Key Laboratory of Functional Materials Physics and Chemistry of the Ministry of EducationJilin Normal UniversitySipingPeople’s Republic of China
  2. 2.College of Information TechnologyJilin Normal UniversitySipingPeople’s Republic of China
  3. 3.College of PhysicsJilin Normal UniversitySipingPeople’s Republic of China

Personalised recommendations