Advertisement

Enhanced performance of hierarchical CuS clusters applying TRGO as conductive carrier for supercapacitors

  • Wenwu Zhu
  • Xuemei OuEmail author
  • Zhengdao Lu
  • Kaiyang Chen
  • Yihan Ling
  • Hanzhuo ZhangEmail author
Article

Abstract

A facile hydrothermal-assisted process without surfactant was developed to prepare hierarchical CuS clusters and novel CuS–thermal reduced graphene oxide (TRGO) composites as advanced electrodes. The preparation of TRGO was simple and efficient without protective atmosphere and reagent, and the CuS–TRGO composites were characterized by distributed CuS microspheres coated with TRGO carrier uniformly to improve the pseudocapacitance properties. Electrochemical performance of the electrode of CuS–TRGO composites was elucidated by utilizing cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy methods respectively. The electrode exhibited ultrahigh specific capacitance up to 1222.5 F g−1 at 1 A g−1, good rate capability as well as excellent cycling stability with 92.11% capacitance retention after 3000 charge–discharge cycles at 5 A g−1, which implied that the as-prepared CuS–TRGO could be a favorable and suitable electrode material as supercapacitors in energy storage.

Notes

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities (Grant No. 2015XKMS066).

References

  1. 1.
    Y. Wang, Y. Song, Y. Xia, Chem. Soc. Rev. 45, 5925 (2016)Google Scholar
  2. 2.
    D. Chen, H. Feng, J. Li, Chem. Rev. 112, 6027 (2012)Google Scholar
  3. 3.
    Q.F. Zhang, C.M. Xu, B.A. Lu, Electrochim. Acta 132, 180 (2014)Google Scholar
  4. 4.
    G.P. Wang, L. Zhang, J.J. Zhang, Chem. Soc. Rev. 41, 797 (2012)Google Scholar
  5. 5.
    Y.Y. Xu, X.H. Gao, W.Y. Chu et al., J. Mater. Chem. A. 4, 10248 (2016)Google Scholar
  6. 6.
    C. Zhou, Y.W. Zhang, Y.Y. Li et al., Nano Lett. 5, 2078 (2013)Google Scholar
  7. 7.
    H.Y. Wang, H. Jiang, Y.J. Hu et al., Chem. Eng. Sci. 174, 104 (2017)Google Scholar
  8. 8.
    D.L. Li, Y.N. Gong, C.X. Pan, Sci. Rep. 6, 29788 (2016)Google Scholar
  9. 9.
    J.Y. Yin., J.Y. Park, Int. J. Hydrog. Energy 39, 16562 (2014)Google Scholar
  10. 10.
    L.Q. Wang, X.C. Li, T.M. Guo et al., Int. J. Hydrog. Energy 39, 7876 (2014)Google Scholar
  11. 11.
    H.Y. Chen, Y.N. Ai, F. Liu et al., Electrochim. Acta 213, 55 (2016)Google Scholar
  12. 12.
    C.L. Qin, Y.S. Zhang, Z.F. Wang et al., J. Mater. Sci. 27, 9206 (2016)Google Scholar
  13. 13.
    X.F. Li, K.X. Zhou, J.Y. Zhou et al., J. Mater. Sci. Technol. 34, 2342 (2018)Google Scholar
  14. 14.
    P. Naveenkumar, G.P. Kalaignan, S. Arulmani et al., J. Mater. Sci. 29, 16853 (2018)Google Scholar
  15. 15.
    Y.W. Sui, Y.M. Zhang, P.H. Hou et al., J. Mater. Sci. 52, 7100 (2017)Google Scholar
  16. 16.
    X.Z. Yu, B.A. Lu, Z. X, Adv. Mater. 26, 1044 (2014)Google Scholar
  17. 17.
    L.L. Wang, Q.F. Zhang, J.Y. Zhu et al., Energy. Storage Mater. 16, 37 (2019)Google Scholar
  18. 18.
    Q.F. Zhang, L.L. Wang, J. Wang et al., J. Mater. Chem. A 6, 9411 (2018)Google Scholar
  19. 19.
    H. Heydari, S.E. Moosavifard, M. Shahraki et al., J. Energy Chem. Mater. 4, 762 (2017)Google Scholar
  20. 20.
    H.M. Hu, J. Wang, C.H. Deng et al., J. Mater. Sci. 53, 14250 (2018)Google Scholar
  21. 21.
    C.H. An, Y. Ni, Z.F. Wang et al., Inorg. Chem. Front. 5, 1045 (2018)Google Scholar
  22. 22.
    W.S. Hummers, R.E. Offeman, J. Am. Chem. Soc. 80, 1339 (1958)Google Scholar
  23. 23.
    L.J. Bian, F. Luan, S.S. Liu et al., Electrochim. Acta 64, 17 (2012)Google Scholar
  24. 24.
    K.J. Huang, J.Z. Zhang, Y. Liu et al., Int. J. Hydrog. Energy 40, 10158 (2015)Google Scholar
  25. 25.
    F. Laffineur, J. Delhalle, S. Guittard et al., Colloids Surf. A 198, 817 (2002)Google Scholar
  26. 26.
    J. Zhang, J.G. Yu, M. Jaroniec et al., Nano Lett. 12, 4584 (2012)Google Scholar
  27. 27.
    K. Chang, W.X. Chan, Chem. Commun. 47, 4252 (2011)Google Scholar
  28. 28.
    L. Fan, L. Tang, H.F. Gong et al., J. Mater. Chem. 22, 16376 (2012)Google Scholar
  29. 29.
    R.J. Zou, M.F. Yuen, L. Yu et al., Sci. Rep. 6, 20264 (2016)Google Scholar
  30. 30.
    J.X. Guo, X.Q. Zhang, Y.F. Sun et al., J. Power Sources 355, 31 (2017)Google Scholar
  31. 31.
    K.J. Huang, J.Z. Zhang, Y. Fan, J. Alloys Compd. 625, 158 (2015)Google Scholar
  32. 32.
    T. Zhu, B.Y. Xia, L. Zhou et al., J. Mater. Chem. 22, 7851 (2012)Google Scholar
  33. 33.
    H. Peng, G.F. Ma, K.J. Sun, J. Mater. Chem. A 2, 3303 (2014)Google Scholar
  34. 34.
    T.K. Zhao, W.B. Yang, X. Zhao et al., Composites B 150, 60 (2018)Google Scholar
  35. 35.
    K.J. Huang, J.Z. Zhang, K. Xing, Electrochim. Acta 149, 28 (2014)Google Scholar
  36. 36.
    B. De, T. Kuila, N.H. Kim et al., Carbon 122, 247 (2017)Google Scholar
  37. 37.
    W. Xiao, W.J. Zhou, T. Feng et al., J. Mater. Sci. 28, 5931 (2017)Google Scholar
  38. 38.
    C.N. Chen, Q. Zhang, T. Ma et al., J. Nanosci. Nanotechnol. 17, 2811 (2017)Google Scholar
  39. 39.
    B. De, J. Balamurugan, N.H. Kim et al., ACS Appl. Mater. Interfaces 9, 2459 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringChina University of Mining and TechnologyXuzhouPeople’s Republic of China

Personalised recommendations