A template-free synthesis of porous 3D honeycomb-like carbons for supercapacitor electrodes

  • Yuexin Liu
  • Sha Li
  • Yanzhong WangEmail author
  • Jinlong Yang


Highly porous 3D honeycomb-like carbons were synthesized by a template-free method. Herein, the low-cost coal tar pitch is used as a carbon source. NH4Cl is employed as a blowing agent to form 3D honeycomb-like carbons, and followed by KOH chemical activation to form porous structure. The as-prepared porous 3D honeycomb-like carbons possess a large specific surface area of 2881.7 m2 g− 1 with a total pore volume of 2.18 cm3 g− 1. The unique structure allows for exhibiting a high specific capacitance of 324 F g− 1 at a current density of 0.1 A g− 1 in the three-electrode system. Moreover, the assembled symmetric supercapacitors exhibit an energy density of 9.72 Wh kg− 1 at a power density of 250 W kg− 1 and 6.43 Wh kg− 1 at a power density of 5000 W kg− 1, and excellent cycle performance of 92.2% retention over 5000 cycles at 1 A g− 1.



The work was financially supported by the National Natural Science Foundation of China (No. 51572140), and Natural Science Foundation of Shanxi Province (No. 201801D121284).


  1. 1.
    P. Simon, Y. Gogotsi, Materials for electrochemical capacitors. Nat. mater. 7, 845–854 (2008)CrossRefGoogle Scholar
  2. 2.
    Z. Hai, L. Gao, Q. Zhang, H. Xu, D. Cui, Z. Zhang, D. Tsoukalas, J. Tang, S. Yan, C. Xue, Facile synthesis of core–shell structured PANI-Co3O4 nanocomposites with superior electrochemical performance in supercapacitors. Appl. Surface Sci. 361, 57–62 (2016)CrossRefGoogle Scholar
  3. 3.
    M. Inagaki, H. Konno, O. Tanaike, Carbon materials for electrochemical capacitors. J. Power Sources 195, 7880–7903 (2010)CrossRefGoogle Scholar
  4. 4.
    L.L. Zhang, X. Zhao, Carbon-based materials as supercapacitor electrodes. Chem. Soc. Rev. 38, 2520–2531 (2009)CrossRefGoogle Scholar
  5. 5.
    L. Dai, D.W. Chang, J.B. Baek, W. Lu, Carbon nanomaterials for advanced energy conversion and storage. Small 8, 1130–1160 (2012)CrossRefGoogle Scholar
  6. 6.
    L. Bai, X. Jiang, C. Wu, X. Gao, Y. Su, K. Ding, Z. Zhang, Nanoporous carbons prepared with ZIF-8 as a template and activation agent for supercapacitors. Mater. Lett. 223, 150–153 (2018)CrossRefGoogle Scholar
  7. 7.
    C. Portet, G. Yushin, Y. Gogotsi, Effect of carbon particle size on electrochemical performance of EDLC. J.Electrochem. Soc. 155, A531–A536 (2008)CrossRefGoogle Scholar
  8. 8.
    H. Fan, W. Shen, Carbon nanosheets: synthesis and application. ChemSusChem 8, 2004–2027 (2015)CrossRefGoogle Scholar
  9. 9.
    Q. Wang, J. Yan, Z. Fan, Nitrogen-doped sandwich-like porous carbon nanosheets for high volumetric performance supercapacitors. Electrochim. Acta 146, 548–555 (2014)CrossRefGoogle Scholar
  10. 10.
    Z.Y. Jin, A.H. Lu, Y.Y. Xu, J.T. Zhang, W.C. Li, Ionic liquid-assisted synthesis of microporous carbon nanosheets for use in high rate and long cycle life supercapacitors. Adv. Mater. 26, 3700–3705 (2014)CrossRefGoogle Scholar
  11. 11.
    D. Liu, Z. Jia, D. Wang, Preparation of hierarchically porous carbon nanosheet composites with graphene conductive scaffolds for supercapacitors: an electrostatic-assistant fabrication strategy. Carbon 100, 664–677 (2016)CrossRefGoogle Scholar
  12. 12.
    Y. Song, J. Yang, K. Wang, S. Haller, Y. Wang, C. Wang, Y. Xia, In-situ synthesis of graphene/nitrogen-doped ordered mesoporous carbon nanosheet for supercapacitor application. Carbon 96, 955–964 (2016)CrossRefGoogle Scholar
  13. 13.
    M. Sevilla, A.B. Fuertes, Direct synthesis of highly porous interconnected carbon nanosheets and their application as high-performance supercapacitors. ACS Nano 8, 5069–5078 (2014)CrossRefGoogle Scholar
  14. 14.
    A.B. Fuertes, M. Sevilla, Hierarchical microporous/mesoporous carbon nanosheets for high-performance supercapacitors. ACS Appl. Mater. Interfaces 7, 4344–4353 (2015)CrossRefGoogle Scholar
  15. 15.
    X. Yu, J. Zhao, R. Lv, Q. Liang, C. Zhan, Y. Bai, Z.H. Huang, W. Shen, F. Kang, Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium-sulfur batteries. J. Mater. Chem. A 3, 18400–18405 (2015)CrossRefGoogle Scholar
  16. 16.
    L. Chen, Z. Wang, C. He, N. Zhao, C. Shi, E. Liu, J. Li, Porous graphitic carbon nanosheets as a high-rate anode material for lithium-ion batteries. ACS Appl. Mater. Interfaces 5, 9537–9545 (2013)CrossRefGoogle Scholar
  17. 17.
    Y. Wang, Y. Liu, W. Liu, G. Zhang, G. Liu, H. Chen, J Yang, Large-scale synthesis of highly porous carbon nanosheets for supercapacitor electrodes. J.Alloys Comp. 677, 105–111 (2016)CrossRefGoogle Scholar
  18. 18.
    H. Wang, Z. Xu, A. Kohandehghan, Z. Li, K. Cui, X. Tan, T.J. Stephenson, C.K. King’ondu, C.M.B. Holt, B.C. Olsen, J.K. Tak, D. Harfield, A.O. Anyia, D. Mitlin, Interconnected carbon nanosheets derived from hemp for ultrafast supercapacitors with high energy. ACS Nano 7, 5131–5141 (2013)CrossRefGoogle Scholar
  19. 19.
    Y. An, Y. Yang, Z. Hu, B. Guo, X. Wang, X. Yang, Q. Zhang, H. Wu, High-performance symmetric supercapacitors based on carbon nanosheets framework with graphene hydrogel architecture derived from cellulose acetate. J. Power Sources 337, 45–53 (2017)CrossRefGoogle Scholar
  20. 20.
    S.N. Talapaneni, J.H. Lee, S.H. Je, O. Buyukcakir, T.W. Kwon, K. Polychronopoulou, J.W. Choi, A. Coskun, Chemical blowing approach for ultramicroporous carbon nitride frameworks and their applications in gas and energy storage. Adv. Funct. Mater. 27, 1604658 (2017)CrossRefGoogle Scholar
  21. 21.
    H. Wang, Q. Yi, L. Gao, Y. Gao, T. Liu, Y.B. Jiang, Y. Sun, G. Zou, Hierarchically interconnected nitrogen-doped carbon nanosheets for an efficient hydrogen evolution reaction. Nanoscale 9, 16342–16348 (2017)CrossRefGoogle Scholar
  22. 22.
    X. Wang, Y. Zhang, C. Zhi, X. Wang, D. Tang, Y. Xu, Q. Weng, X. Jiang, M. Mitome, D. Golberg, Y. Bando, Three-dimensional strutted graphene grown by substrate-free sugar blowing for high-power-density supercapacitors. Nat. Commun. 4, 2905 (2013)CrossRefGoogle Scholar
  23. 23.
    X. Lu, K. Xu, P. Chen, K. Jia, S. Liu, C. Wu, Facile one step method realizing scalable production of g-C3N4 nanosheets and study of their photocatalytic H2 evolution activity. J. Mater. Chem. A 2, 18924–18928 (2014)CrossRefGoogle Scholar
  24. 24.
    H. Lei, T. Yan, H. Wang, L. Shi, J. Zhang, D. Zhang, Graphene-like carbon nanosheets prepared by a Fe-catalyzed glucose-blowing method for capacitive deionization. J. Mater. Chem. A 3, 5934–5941 (2015)CrossRefGoogle Scholar
  25. 25.
    X. Zeng, D. Wu, R. Fu, H. Lai, J. Fu, Preparation and electrochemical properties of pitch-based activated carbon aerogels. Electrochim. Acta 53, 5711–5715 (2008)CrossRefGoogle Scholar
  26. 26.
    B. Petrova, B. Tsyntsarski, T. Budinova, N. Petrov, C.O. Ania, J.B. Parra, M. Mladenov, P. Tzvetkov, Synthesis of nanoporous carbons from mixtures of coal tar pitch and furfural and their application as electrode materials. Fuel Proc. Tech. 91, 1710–1716 (2010)CrossRefGoogle Scholar
  27. 27.
    D. Zhai, B. Li, F. Kang, H. Du, C. Xu, Preparation of mesophase-pitch-based activated carbons for electric double layer capacitors with high energy density. Microporous Mesoporous Mater. 130, 224–228 (2010)CrossRefGoogle Scholar
  28. 28.
    W. Zhang, Z.H. Huang, G. Cao, F. Kang, Y. Yang, Coal tar pitch-based porous carbon by one dimensional nano-sized MgO template. J.Phy. Chem. Solid 73, 1428–1431 (2012)CrossRefGoogle Scholar
  29. 29.
    X. He, N. Zhao, J. Qiu, N. Xiao, M. Yu, C. Yu, X. Zhang, M. Zheng, Synthesis of hierarchical porous carbons for supercapacitors from coal tar pitch with nano-Fe2O3 as template and activation agent coupled with KOH activation. J. Mater. Chem. A 1, 9440–9448 (2013)CrossRefGoogle Scholar
  30. 30.
    X. He, H. Zhang, H. Zhang, X. Li, N. Xiao, J. Qiu, Direct synthesis of 3D hollow porous graphene balls from coal tar pitch for high performance supercapacitors. J. Mater. Chem. A 2, 19633–19640 (2014)CrossRefGoogle Scholar
  31. 31.
    W. Geng, F. Ma, G. Wu, S. Song, J. Wan, D. Ma, MgO-templated hierarchical porous carbon sheets derived from coal tar pitch for supercapacitors. Electrochim. Acta 191, 854–863 (2016)CrossRefGoogle Scholar
  32. 32.
    X. He, X. Li, H. Ma, J. Han, H. Zhang, C. Yu, N. Xiao, J. Qiu, ZnO template strategy for the synthesis of 3D interconnected graphene nanocapsules from coal tar pitch as supercapacitor electrode materials. J. Power Sources 340, 183–191 (2017)CrossRefGoogle Scholar
  33. 33.
    J. Shao, F. Ma, G. Wu, C. Dai, W. Geng, S. Song, J. Wan, In-situ MgO (CaCO3) templating coupled with KOH activation strategy for high yield preparation of various porous carbons as supercapacitor electrode materials. Chem. Eng. J. 321, 301–313 (2017)CrossRefGoogle Scholar
  34. 34.
    T.F. Yi, J. Mei, Y. Xie, S. Luo, Hybrid porous flower-like NiO@CeO2 microspheres with improved pseudocapacitive properties. Electrochim. Acta 297, 593–605 (2019)CrossRefGoogle Scholar
  35. 35.
    T.F. Yi, Y.M. Li, J.Z. Wu, Y. Xie, S. Luo, Hierarchical mesoporous flower-like ZnCo2O4@NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 284, 128–141 (2018)CrossRefGoogle Scholar
  36. 36.
    W. Chen, H. Zhang, Y. Huang, W. Wang, A fish scale based hierarchical lamellar porous carbon material obtained using a natural template for high performance electrochemical capacitors. J. Mater. Chem. 20, 4773–4775 (2010)CrossRefGoogle Scholar
  37. 37.
    W. Qian, F. Sun, Y. Xu, L. Qiu, C. Liu, S. Wang, F. Yan, Human hair-derived carbon flakes for electrochemical supercapacitors. Energy Environ. Sci. 7, 379–386 (2014)CrossRefGoogle Scholar
  38. 38.
    Y. Guo, Z.Q. Shi, M.M. Chen, C.Y. Wang, Hierarchical porous carbon derived from sulfonated pitch for electrical double layer capacitors. J. Power Sources 252, 235–243 (2014)CrossRefGoogle Scholar
  39. 39.
    T. Guan, K. Li, J. Zhao, R. Zhao, G. Zhang, D. Zhang, J. Wang, Template-free preparation of layer-stacked hierarchical porous carbons from coal tar pitch for high performance all-solid-state supercapacitors. J. Mater. Chem. A 5, 15869–15878 (2017)CrossRefGoogle Scholar
  40. 40.
    M.X. Wang, C.Y. Wang, M.M. Chen, Y.S. Wang, Z.Q. Shi, X. Du, T.Q. Li, Z.J. Hu, Preparation of high-performance activated carbons for electric double layer capacitors by KOH activation of mesophase pitches. New Carbon Mater. 25, 285–290 (2010)CrossRefGoogle Scholar
  41. 41.
    Q. Wang, J. Yan, T. Wei, J. Feng, Y. Ren, Z. Fan, M. Zhang, X. Jing, Two-dimensional mesoporous carbon sheet-like framework material for high-rate supercapacitors. Carbon 60, 481–487 (2013)CrossRefGoogle Scholar
  42. 42.
    X. Xie, X. He, H. Zhang, F. Wei, N. Xiao, J. Qiu, Interconnected sheet-like porous carbons from coal tar by a confined soft-template strategy for supercapacitors. Chem. Eng. J. 350, 49–56 (2018)CrossRefGoogle Scholar
  43. 43.
    D. Wang, Y. Wang, Y. Chen, W. Liu, H. Wang, P. Zhao, Y. Li, J. Zhang, Y. Dong, S. Hu, J. Yang, Coal tar pitch derived N-doped porous carbon nanosheets by the in-situ formed g-C3N4 as a template for supercapacitor electrodes. Electrochim. Acta 283, 132–140 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringNorth University of ChinaTaiyuanPeople’s Republic of China
  2. 2.State Key Lab of New Ceramics and Fine Processing, Department of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China

Personalised recommendations