Advertisement

Influence of spark plasma sintering temperature on piezoelectric properties of PZT-PMnN piezoelectric ceramics

  • Li-Qian ChengEmail author
  • Ze Xu
  • Hao-Cheng Thong
  • Chunlin Zhao
  • Xiang-Yu Sun
  • Yi-Jia DuEmail author
  • Ke Wang
Article
  • 4 Downloads

Abstract

Being capable of interconverting electrical and mechanical energy, piezoelectric materials are essential for electromechanical devices. In this study, high-performance 0.95Pb(Zr0.52Ti0.48)O3–0.05Pb(Mn1/3Nb2/3)O3 (PZT-PMnN) piezoelectric ceramics were prepared by spark plasma sintering (SPS). We systematically investigated temperature-dependent electrical properties and phase structure of ceramics. The SPS temperature was found to be optimized at 950 °C. PZT-PMnN ceramic sintered at 950 °C possessed high piezoelectric performances, i.e. d33 of 411 pC/N and d33* of 556 pm/V. Furthermore, a high mechanical quality factor Qm (480) and low dielectric loss (0.19%) were obtained. Therefore, the spark-plasma-sintered PZT-PMnN ceramic is a promising candidate for applications.

Notes

Acknowledgements

This study was funded by the National Natural Science Foundation of China (Grant Nos. 51572143, 51602345), the State Key Laboratory of New Ceramics and Fine Processing Tsinghua University (Grant No. KF201512).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    J. Rödel, K.G. Webber, R. Dittmer, W. Jo, M. Kimura, D. Damjanovic, J. Eur. Ceram. Soc. 35, 1659–1681 (2015)CrossRefGoogle Scholar
  2. 2.
    J.S. Zhou, F.Z. Yao, K. Wang, Q. Li, X.M. Qi, F.Y. Zhu, J.F. Li, J. Mater. Sci. 26, 9329–9335 (2015)Google Scholar
  3. 3.
    J.F. Li, K. Wang, F.Y. Zhu, L.Q. Cheng, F.Z. Yao, J. Am. Ceram. Soc. 96, 3677–3696 (2013)CrossRefGoogle Scholar
  4. 4.
    J. Wu, D. Xiao, J. Zhu, Chem. Rev. 115, 2559–2595 (2015)CrossRefGoogle Scholar
  5. 5.
    T. Zheng, J. Wu, D. Xiao, J. Zhu, Chem. Rev. 98, 552–624 (2018)Google Scholar
  6. 6.
    T. Wu, Q. Sun, W. Ma, Z. Liu, J. Electroceram. 31, 28–34 (2013)CrossRefGoogle Scholar
  7. 7.
    C.C. Tsai, C.S. Hong, C.C. Shih, S.Y. Chu, J. Alloy. Compd. 511, 54–62 (2012)CrossRefGoogle Scholar
  8. 8.
    R. Guo, L.E. Cross, S.-E. Park, B. Noheda, D.E. Cox, G. Shirane, Phys. Rev. Lett. 84, 5423 (2000)CrossRefGoogle Scholar
  9. 9.
    L. Li, J. Xu, Y. Liu, H. Zhang, Z. Li, X. Gao, J. Liu, F. Gao, Ceram. Int. 44, 9934–9941 (2018)CrossRefGoogle Scholar
  10. 10.
    L.Q. Cheng, K. Wang, J.F. Li, Chem. Commun. 49, 4003–4005 (2013)CrossRefGoogle Scholar
  11. 11.
    K.J. Lim, J.Y. Park, J.S. Lee, S.H. Kang, H.H. Kim, Trans. Electr. Electr. Mater. 5, 76–80 (2004)CrossRefGoogle Scholar
  12. 12.
    M. Promsawat, N. Promsawat, J.W. Wong, Z. Luo, S. Pojprapai, S. Jiansirisomboon, Ceram. Int. 43, 13475–13482 (2017)CrossRefGoogle Scholar
  13. 13.
    B. Jaffe, R.S. Roth, S. Marzullo, J. Appl. Phys. 25, 809–810 (1954)CrossRefGoogle Scholar
  14. 14.
    B. Jaffe, R.S. Roth, S. Marzullo, J. Res. Natl. Bur. Stan. 55, 239–254 (1955)CrossRefGoogle Scholar
  15. 15.
    J. Du, J. Qiu, K. Zhu, H. Ji, J. Electroceram. 32, 234–239 (2013)CrossRefGoogle Scholar
  16. 16.
    F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.Q. Chen, T.R. Shrout, S. Zhang, Nat. Mater. 17, 349–354 (2018)CrossRefGoogle Scholar
  17. 17.
    S. Priya, H.W. Kim, K. Uchino, J. Am. Ceram. Soc. 87, 1907–1911 (2004)CrossRefGoogle Scholar
  18. 18.
    A. Prasatkhetragarn, R. Yimnirun, Ceram. Int. 39, S91–S95 (2013)CrossRefGoogle Scholar
  19. 19.
    K. Wang, J.F. Li, J.J. Zhou, Appl. Phys. Express 4, 061501 (2011)CrossRefGoogle Scholar
  20. 20.
    C. Chen, R. Liang, Z. Zhou, W. Zhang, X. Dong, Ceram. Int. 44, 3563–3570 (2018)CrossRefGoogle Scholar
  21. 21.
    T. Hungría, J. Galy, A. Castro, Adv. Eng. Mater. 11, 15–631 (2009)CrossRefGoogle Scholar
  22. 22.
    B. Han, C. Zhao, Z.X. Zhu, X. Chen, Y. Han, D. Hu, M.H. Zhang, H.C. Thong, K. Wang, ACS Appl. Mater. Inter. 9, 34078–34084 (2017)CrossRefGoogle Scholar
  23. 23.
    L.Q. Cheng, Z. Xu, C. Zhao, H.C. Thong, Z.Y. Cen, W. Lu, Y. Lan, K. Wang, RSC Adv. 8, 35594 (2018)CrossRefGoogle Scholar
  24. 24.
    S.M. Gupta, D. Viehland, J. Appl. Phys. 83, 407–414 (1998)CrossRefGoogle Scholar
  25. 25.
    Y. Zhou, Q. Li, C. Xu, F. Zhuo, Q. Yan, Y. Zhang, X. Chu, J. Am. Ceram. Soc. 101, 3054–3064 (2018)CrossRefGoogle Scholar
  26. 26.
    B. Hanrahan, Y. Espinal, C.Neville,R. Rudy, M. Rivas, A. Smith, M.T. Kesim, S.P. Alpay, J. Appl. Phys. 123, 124104 (2018)CrossRefGoogle Scholar
  27. 27.
    F. Bian, S. Yan, C. Xu, Z. Liu, X. Chen, C. Mao, F. Cao, J. Bian, G. Wang, X. Dong, J. Eur. Ceram. Soc. 38, 3170–3176 (2018)CrossRefGoogle Scholar
  28. 28.
    D. Damjanovic, M. Demartin, J. Phy. D 29, 2057 (1996)CrossRefGoogle Scholar
  29. 29.
    N. Ma, B.P. Zhang, W.G. Yang, D. Guo, J. Eur. Ceram. Soc. 32, 1059–1066 (2012)CrossRefGoogle Scholar
  30. 30.
    P. Zheng, J.L. Zhang, Y.Q. Tan, C.L. Wang, ACTA Mater. 60, 5022–5030 (2012)CrossRefGoogle Scholar
  31. 31.
    G. Liu, S. Zhang, W. Jiang, W. Cao, Mater. Sci. Eng. R 89, 1–48 (2015)CrossRefGoogle Scholar
  32. 32.
    T. Kamiya, T. Suzuki, T. Tsurumi, M. Daimon, Jpn. J. Appl. Phys. 31, 3085 (1992)CrossRefGoogle Scholar
  33. 33.
    Z. Tan, J. Tian, Z. Fan, Z. Lu, D. Zheng, Y. Wang, D. Chen, M. Qin, M. Zeng, X. Lu, X. Gao, J.M. Liu, Appl. Phys. Lett. 112, 152905 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringChina University of Mining & Technology (Beijing)BeijingPeople’s Republic of China
  2. 2.State Key Laboratory of New Ceramics and Fine Processing, School of Materials Science and EngineeringTsinghua UniversityBeijingPeople’s Republic of China
  3. 3.Microsystem and Terahertz Research CenterChina Academy of Engineering PhysicsChengduPeople’s Republic of China

Personalised recommendations