Advertisement

Electrochemical migration behavior of Sn–3.0Ag–0.5Cu solder alloy under SO2 polluted thin electrolyte layers

  • Bokai Liao
  • Zhen Li
  • Yu CaiEmail author
  • Xingpeng Guo
Article

Abstract

The effect of HSO3 on the electrochemical migration (ECM) of Sn–3.0Ag–0.5Cu lead-free solder alloy under thin electrolyte layers was investigated using the thin electrolyte layer method. The results showed that the migration element of Sn–3.0Ag–0.5Cu alloy was Sn and the faster-growing branch of the dendrite resulted in a sharper tip during the dendrite growth process. Increasing the amount of HSO3 decreased the probability of ECM. Due to the hydrolysis of HSO3, the pH value of electrolyte in thin electrolyte layer shifted toward a strongly acidic environment and a lower pH condition was favorable for dendrite formation. However, HSO3 reacted with tin ions to form some insoluble compounds during the ECM process, resulting in a decrease of tin ion concentration under thin electrolyte layers. A protective film formed on the anode surface, thus blocking the anodic dissolution process. Possible reactions were proposed to explain the inhibitory effect of HSO3 on the ECM of Sn–3.0Ag–0.5Cu alloy.

Notes

Acknowledgements

The authors thank the National Natural Science Foundation of China (No. 51571098) and the National Natural Science Foundation of Wuhan (Grant No. WX18Q21 to YC) for their financial support.

References

  1. 1.
    S. Zou, X. Li, C. Dong, K. Ding, K. Xiao, Electrochemical migration. Electrochim. Acta 114, 363 (2013)CrossRefGoogle Scholar
  2. 2.
    D. Minzari, M.S. Jellesen, P. Møller, R. Ambat, Corros. Sci. 53, 3366 (2011)CrossRefGoogle Scholar
  3. 3.
    Q. Xiao, F. Grunwald, K. Carlson, Circuit World. 23, 6 (1997)CrossRefGoogle Scholar
  4. 4.
    T. Takemoto, R.M. Latanision, T.W. Eagar, A. Matsunawa, Corros. Sci. 39, 1415 (1997)CrossRefGoogle Scholar
  5. 5.
    B. Medgyes, B. Horváth, B. Illés, T. Shinohara, A. Tahara, G. Harsányi, O. Krammer, Corros. Sci. 92, 43 (2015)CrossRefGoogle Scholar
  6. 6.
    D. Herkommer, J. Punch, M. Reid, Microelectron Reliab. 50, 116 (2010)CrossRefGoogle Scholar
  7. 7.
    M. Islam, Y.C. Chan, A. Sharif, J. Alloy Compd. 396, 217 (2005)CrossRefGoogle Scholar
  8. 8.
    G. Harsányi, Microelectron. Reliab. 39, 1407 (1999)CrossRefGoogle Scholar
  9. 9.
    L. Hua, C. Yang, Microelectron. Reliab. 51, 2274 (2011)CrossRefGoogle Scholar
  10. 10.
    B. Medgyes, X. Zhong, G. Harsányi, J. Mater. Sci.: Mater. Electron. 26, 2010 (2015)Google Scholar
  11. 11.
    B. Medgyes, L. Gál, D. Szivós, The effect of NaCl on water condensation and electrochemical migration. in IEEE 20th International Symposium for Design and Technology in Electronic Packaging (SIITME), p. 259 (2014)Google Scholar
  12. 12.
    V. Verdingovas, M.S. Jellesen, R. Ambat, Corros. Eng. Sci. Technol. 48, 426 (2013)CrossRefGoogle Scholar
  13. 13.
    B.I. Noh, S.B. Jung, J. Mater. Sci.: Mater. Electron. 19, 952 (2018)Google Scholar
  14. 14.
    R. Ambat, M.S. Jellesen, D. Minzari, U. Rathinavelu, M.A. Johnsen, P. Westermann, P. Møller, Solder flux residues and electrochemical migration failures of electronic devices, in Proceedings of the Eurocorr, p. 6 (2009)Google Scholar
  15. 15.
    B. Medgyes, P. Szabó, P. Tamási, L. Gál, G. Harsányi, Electrochemical migration of Cu and Sn in Na2SO4 environment, in 39th International Spring Seminar on Electronics Technology (ISSE), p. 232 (2016)Google Scholar
  16. 16.
    J.Y. Jung, S.B. Lee, H.Y. Lee, Y.C. Joo, Y.B. Park, J. Electron. Mater. 38, 691 (2009)CrossRefGoogle Scholar
  17. 17.
    S. Abdul-Wahab, S. Fadlallah, M. Al-Rashdi, Sustain. Cities Soc. 38, 675 (2018)CrossRefGoogle Scholar
  18. 18.
    Q. Jiang, M. Ma, K. Zhang, X. Li, Y. Li, G. Shi, J. Yuan, J Rare Earth. 32, 1170 (2014)CrossRefGoogle Scholar
  19. 19.
    M. Grobelny, N. Sobczak, J. Mater. Eng. Perform. 21, 614 (2012)CrossRefGoogle Scholar
  20. 20.
    J.C. Liu, SungWon Park, S. Nagao, K. Suganuma, Corros. Sci. 92, 263 (2015)CrossRefGoogle Scholar
  21. 21.
    U.R. EVANS, CAJ Taylor Corros. Sci. 12, 227 (1972)CrossRefGoogle Scholar
  22. 22.
    B. Medgyes, L. Gál, D. Szivós, The effect of NaCl on water condensation and electrochemical migration, 2014. in IEEE 20th International Symposium for Design and Technology in Electronic Packaging (SIITME), p. 259 (2014)Google Scholar
  23. 23.
    B. Liao, W. Jia, R. Sun, Z. Chen, X. Guo, Surf Rev Lett. 1850208 (2018)Google Scholar
  24. 24.
    B. Liao, Z. Chen, Y. Qiu, G. Zhang, X. Guo, Corros. Sci. 112, 393 (2016)CrossRefGoogle Scholar
  25. 25.
    B. Liao, L. Wei, Z. Chen, X. Guo, RSC Adv. 7, 15060 (2017)CrossRefGoogle Scholar
  26. 26.
    X. Zhong, S. Yu, L. Chen, L. Hu, Z. Zhang, J. Mater. Sci. 28, 2279 (2016)Google Scholar
  27. 27.
    B. Liao, Z. Chen, Q. Qiu, X. Guo, Corros. Sci. 118, 190 (2017)CrossRefGoogle Scholar
  28. 28.
    X. Zhong, G. Zhang, X. Guo, Corros. Sci. 96, 1 (2015)CrossRefGoogle Scholar
  29. 29.
    B. Liao, H. Cen, Z. Chen, X. Guo, Corros. Sci. 143, 347 (2018)CrossRefGoogle Scholar
  30. 30.
    H. Ma, J.C. Suhling, J. Mater. Sci. 44, 1141 (2009)CrossRefGoogle Scholar
  31. 31.
    A.A. El-Daly, A.E. Hammad, G.S. Al-Ganainy, Mater. Des. 56, 594 (2014)CrossRefGoogle Scholar
  32. 32.
    J.Y. Jung, S.B. Lee, H.Y. Lee, Y.C. Joo, Y.B. Park, J. Electron. Mater. 37, 1111 (2008)CrossRefGoogle Scholar
  33. 33.
    X. Zhong, G. Zhang, Y. Qiu, Z. Chen, X. Guo, Corros. Sci. 74, 71 (2013)CrossRefGoogle Scholar
  34. 34.
    X. Zhong, G. Zhang, Y. Qiu, Z. Chen, W. Zou, X. Guo, Electrochem. Commun. 27, 63 (2013)CrossRefGoogle Scholar
  35. 35.
    X. Zhong, L. Chen, J. Hu, Y. Shi, Z. Zhang, D. Shi, J. Electrochem. Soc. 164, D342 (2017)CrossRefGoogle Scholar
  36. 36.
    D. Minzari, F.B. Grumsen, M.S. Jellesen, P. Møller, R. Ambat, Corros. Sci. 53, 1659 (2011)CrossRefGoogle Scholar
  37. 37.
    M. Sun, H.G. Liao, K. Niu, H. Zheng, Sci Rep. 3, 3227 (2013)CrossRefGoogle Scholar
  38. 38.
    J.H. Wang, F.I. Wei, H.C. Shin, Corrosion 52, 900 (1996)CrossRefGoogle Scholar
  39. 39.
    S.S.A. El-Rehim, F. Taha, M.B. Saleh, S.A. Mohamed, Corros. Sci. 33, 1789 (1992)CrossRefGoogle Scholar
  40. 40.
    J.Y. Jung, S.B. Lee, Y.C. Joo, H.Y. Lee, Y.B. Park, Microelectron. Eng. 85, 1597 (2008)CrossRefGoogle Scholar
  41. 41.
    I.V. Demidenko, V.M. Ishimov, Russ. J. Appl. Chem. 90, 1225 (2017)CrossRefGoogle Scholar
  42. 42.
    P. Hankare, A. Jadhav, P. Chate, K. Rathod, P. Chavan, S. Ingole, J. Alloy. Compd. 463, 581 (2008)CrossRefGoogle Scholar
  43. 43.
    C. Gao, H. Shen, L. Sun, Z. Shen, Mater Lett. 65, 1413 (2011)CrossRefGoogle Scholar
  44. 44.
    K. Mishra, K. Rajeshwar, A. Weiss, M. Murley, R.D. Engelken, M. Slayton, H.E. McCloud, J. Electrochem. Soc. 136, 1915 (1989)CrossRefGoogle Scholar
  45. 45.
    C. Almeida, T. Raboczkay, B. Giannetti, J. Appl. Electrochem. 29, 123 (1999)CrossRefGoogle Scholar
  46. 46.
    U.R. Evans, The Corrosion and Oxidation of Metals: Scientific Principles and Practical Application (Edward Arnold London, London 1960), p. 662Google Scholar
  47. 47.
    S.A. El-Rehim, F. Taha, M. Saleh, S. Mohamed, Corros. Sci. 33, 1789 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Interdisciplinary Division of Aeronautical and Aviation EngineeringHong Kong Polytechnic UniversityKowloonPeople’s Republic of China
  2. 2.School of Chemistry and Chemical EngineeringHuazhong University of Science and TechnologyWuhanPeople’s Republic of China
  3. 3.Department of Rehabilitation, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and TechnologyHuazhong University of Science and TechnologyWuhanPeople’s Republic of China

Personalised recommendations