Advertisement

Role of sintering temperature on microstructure and nonlinear electrical properties of 0.1 mol.% Nb2O5 added ZnO–V2O5 varistor ceramics

  • Tapatee Kundu RoyEmail author
  • Tamal Kumar Bhattacharyya
  • Sajjan Kumar Thakur
Article

Abstract

The effect of sintering temperature on the microstructure, density and nonlinear electrical properties of 0.1 mol% Nb2O5 added ZnO–V2O5 varistor ceramics had been investigated. Density measurement, scanning electron microscopy (SEM), X-ray diffraction (XRD) pattern analysis characterized the sintered samples. The electric current and capacitance measurements of the varistor samples were done in varying voltage over a wide range. Image analysis by SEM shows an increase in the average grain size from 2.8 to 7.2 µm when the sintering temperature increases from 850 to 975 °C. The varistor sample, sintered at 850 °C, exhibits breakdown field of 4258 V/cm with nonlinear exponent value of 24. Degradation in breakdown field (1440 V/cm) and nonlinear exponent (9) have been observed with an increase in sintering temperature up to 975 °C. Barrier height estimated from the electric field–current density (E–J) and the capacitance–voltage (C–V) measurements follow an inverse relationship with sintering temperature.

Notes

References

  1. 1.
    L.M. Levinson, H.R. Philipp, ZnO varistors for transient protection. IEEE Trans. Parts Hybrids Packag. 13, 338–343 (1977)CrossRefGoogle Scholar
  2. 2.
    K. Eda, A. Iga, M. Matsuoka, Degradation mechanism of non-ohmic zinc oxide ceramics. J. Appl. Phys. 51, 2678–2684 (1980)CrossRefGoogle Scholar
  3. 3.
    G.D. Mahan, L.M. Levinson, H.R. Philipp, Theory of conduction in ZnO varistors. J. Appl. Phys. 50, 2799–2812 (1979)CrossRefGoogle Scholar
  4. 4.
    G.H. Chen, J.L. Li, Y. Yang, C.L. Yuan, C.R. Zhou, Microstructure and electrical properties of Dy2O3-doped ZnO–Bi2O3 based varistor ceramics. Mat. Res. Bull. 50, 141–147 (2014)CrossRefGoogle Scholar
  5. 5.
    P.Q. Mantas, A.M.R. Senos, J.L. Baptista, Varistor-capacitor characteristics of ZnO Ceramics. J. Mat. Sc. 21, 679–686 (1986)CrossRefGoogle Scholar
  6. 6.
    C.W. Nahm, Effect of MnO2 addition on microstructure and electricalproperties of ZnO–V2O5-based varistor ceramics. Ceram. Int. 35, 541–546 (2009)CrossRefGoogle Scholar
  7. 7.
    S. Bernik, S. Macek, Bui. Ai, The characteristics of ZnO–Bi2O3-based varistor ceramics doped with Y2O3 and varying amounts of Sb2O3,. J. Eur. Ceram. Soc. 24, 1195 (2004)CrossRefGoogle Scholar
  8. 8.
    S. Anas, R.V. Mangalaraja, M. Poothayal, S.K. Shukla, S. Ananthakumar, Direct synthesis of varistor-grade doped nano-crystalline ZnO and its identification through a step-sintering technique. Acta Mater 55, 5792–5801 (2007)CrossRefGoogle Scholar
  9. 9.
    H.H. Hng, P.L. Chan, Microstructure and current-voltage characteristics of ZnO–V2O5–MnO2 varistor system. Ceram. Int. 30, 1647–1653 (2004)CrossRefGoogle Scholar
  10. 10.
    C.W. Nahm, C.H. Park, Microstructure, electrical properties, and degradation behavior of praseodymium oxides-based zinc oxide varistors doped with Y2O3. J. Mater. Sci. 35, 3037–3042 (2000)CrossRefGoogle Scholar
  11. 11.
    J.H. Park, C.W. Nahm, Sintering effect on electrical properties and aging behavior of quaternary ZnO–V2O5–Mn3O4–Nb2O5 ceramics. J. Mater. Sci.: Mater. Electron. 26, 168–175 (2015)Google Scholar
  12. 12.
    H.H. Hng, P.L. Chan, Effect of MnO2 addition on microstructure and electrical properties of ZnO–V2O5-based varistor ceramics. Ceram. Int. 35, 409–413 (2009)CrossRefGoogle Scholar
  13. 13.
    H. Feng, Z. Peng, X. Fu, Z. Fu, C. Wang, L. Qi, H. Miao, Effect of TiO2 doping on microstructural and electrical properties ofZnO–Pr6O11-based varistor ceramics. J. Alloys Compd. 497, 304–307 (2010)CrossRefGoogle Scholar
  14. 14.
    H. Pfeiffer, K.M. Knowles, Effects of vanadium and manganese concentrations on the composition, structure and electrical properties of ZnO-richMnO2–V2O5–ZnO varistors. J. Eur. Ceram. Soc. 24, 1199 (2004)CrossRefGoogle Scholar
  15. 15.
    J. Shen, Y. Zhang, M. Li, R. Bao, M. Shen, C. Huang, G. Zhang, Y. Ke, H. Li, S. Jiang, Effects of Fe and Al co-doping on the leakage current density and clamp voltage ratio of ZnO varistor. J. Alloys Compd. 747, 1018–1026 (2018)CrossRefGoogle Scholar
  16. 16.
    J.K. Tsai, T.B. Wu, Microstructure and nonohmic properties of binary ZnO–V2O5 ceramics sintered at 900 °C. Mater. Lett. 26, 199–203 (1996)CrossRefGoogle Scholar
  17. 17.
    C.W. Nahm, Improvement of electrical properties of V2O5 modified ZnO ceramics by Mn-doping for varistor applications. J. Mat. Sci.: Mater. Electron. 19, 1023–1029 (2008)Google Scholar
  18. 18.
    C.T. Kuo, C.S. Chen, I.-N. Lin, J. Am. Ceram. Soc. 81, 2949–2956 (1998)CrossRefGoogle Scholar
  19. 19.
    G.N.K. T.Asokan, G.R. Iyengar, Nagabhushana, Non-ohmic behavior of the binary ZnO-Nb205System. J. Mater. Sci. 22, 1019–1023 (1987)CrossRefGoogle Scholar
  20. 20.
    C.W. Nahm, Microstructure and electrical properties ofZnO–V2O5–MnO2–Co3O4–Dy2O3–Nb2O5-based varistors. J. Alloys Comp. 490, L52–L54 (2010)CrossRefGoogle Scholar
  21. 21.
    C.W. Nahm, Sintering effect on electrical properties of ZnO–V2O5–MnO2–Nb2O5 ceramics. J. Alloys Comp. 509, L314–L317 (2011)CrossRefGoogle Scholar
  22. 22.
    C.W. Nahm, Nb2O5 doping effect on electrical properties of ZnO–V2O5–Mn3O4 varistor ceramics, Ceram. Int. 38, 5281–5285 (2012)Google Scholar
  23. 23.
    M.I. Mendelson, Average grain size in polycrystalline ceramics. J. Am. Ceram. Soc. 52, 443 (1969)CrossRefGoogle Scholar
  24. 24.
    T.K. Gupta, W.G. Carlson, A grain-boundary defect model for instability/stability of a ZnO varistor. J. Mater. Sci. 20, 3487–3500 (1985)CrossRefGoogle Scholar
  25. 25.
    K. Mukae, K. Tsuda, I. Nagasawa, Capacitance-vs-voltage characteristics of ZnO varistors. J. Appl. Phys. 50, 4475–4476 (1979)CrossRefGoogle Scholar
  26. 26.
    G.K. Williamson, W. Hall, Acta Metall. 1, 22–31 (1953)CrossRefGoogle Scholar
  27. 27.
    J.K. Tsai, T.B. Wu, Non-ohmic characteristics of ZnQ-V2O5 ceramics. J. Appl. Phys. 76, 4817–4822 (1994)CrossRefGoogle Scholar
  28. 28.
    S. Pandey, D. Kumar, O. Parkash, Investigation of the electrical properties of liquid-phase sintered ZnO–V2O5 based varistor ceramics using impedance and dielectric spectroscopy. J. Mater. Sci.: Mater. Electron. 27, 3748–3758 (2016)Google Scholar
  29. 29.
    T. Asokan, G.N.K. Iyengar, G.R. Nagabhushana, Non-ohmic behavior of the binary ZnO–Nb2O5system. J. Mat. Sci. 22, 1019–1023 (1987)CrossRefGoogle Scholar
  30. 30.
    Y. Wang, G.Z. Zhang, P. Liu, Y. Xua, Y. Zeng, S. Jiang, The clamp characteristics and DC aging behavior of ZnO-based varistors ceramics doped with Na2CO3, Ceram. Int. 42, 2106–2114 (2016)Google Scholar
  31. 31.
    G.H. Chen, J.L. Li, X. Chen, X.L. Kang, C.L. Yuan, Sintering temperature dependence of varistor properties and impedance spectroscopy behavior in ZnO based varistors ceramics. J. Mater. Sci.: Mater. Electron. 26, 2389–2396 (2015)Google Scholar
  32. 32.
    T.K. Gupta, Application of Zinc Oxide Varistors. J. Am. Ceram. Soc. 73, 1817–1840 (1990)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Tapatee Kundu Roy
    • 1
    • 2
    Email author
  • Tamal Kumar Bhattacharyya
    • 1
  • Sajjan Kumar Thakur
    • 1
  1. 1.Variable Energy Cyclotron CentreKolkataIndia
  2. 2.Homi Bhabha National Institute, Training School ComplexMumbaiIndia

Personalised recommendations