Advertisement

Ultrasensitive fluorescence detection of Fe3+ ions using fluorescein isothiocyanate functionalized Ag/SiO2/SiO2 core–shell nanocomposites

  • Himanshu RajbongshiEmail author
  • Arnab Sarkar
  • Pratyush Phukan
  • Suparna Bhattacharjee
  • Pranayee Datta
Article
  • 9 Downloads

Abstract

Fluorescein isothiocyanate (FITC) functionalized Ag/SiO2/SiO2 core–shell (CS) nanoparticles (NPs) and nanorods (NRs) are synthesized by chemical method to perform the fluorescence detection of Fe3+ in aqueous medium. The Fe3+ ion sensing is performed on the basis of metal-enhanced fluorescence and subsequent fluorescence quenching of fluorophore (fluorescein isothiocyanate) in aqueous medium. The intensity of fluorescence of FITC is found to get enhanced with increasing the silica shell thickness. The fluorescence intensity of FITC of spherical Ag/SiO2/SiO2 (FITC) CS NPs (AgSiF50) is amplified up to 2.25-folds whereas, in case of Ag/SiO2/SiO2 (FITC) CS NRs (AgSiFNR), the fluorescence intensity of FITC is amplified up to 3.63-folds compared to that of pure FITC. Owing to the amplified fluorescence of FITC, AgSiF50 and AgSiFNR samples are evaluated for detection of Fe3+ in an aqueous medium and the proposed nanoprobes exhibit good sensitivity towards Fe3+ detection because of strong binding affinity of Fe3+ with isothiocyanate group of FITC. The limit of detections for AgSiF50 and AgSiFNR are found to be 19.4 nM and 0.8 nM, respectively. The BET surface areas of AgSiF50 and AgSiFNR are calculated to be 157.64 m2 g−1 and 193.42 m2 g−1, respectively. The higher sensitivity of AgSiFNR compared to AgSiF50 for Fe3+ ion sensing is accredited to the higher adsorption capacity and higher fluorescence of FITC. This Ag/SiO2/SiO2 (FITC) CS NRs probe is a very simple and efficient sensor for Fe3+ ion detection and thus, using this sample, a very simple Arduino based electronic device is fabricated which can give real-time application of the idea.

Notes

Acknowledgements

The authors are thankful to Regional Sophisticated Analytical Instrument Facility, NEHU, Shillong, for TEM analysis, IIT Guwahati, for TRPL analysis and IASST, Boragaon, for zeta potential measurement. The corresponding author Himanshu Rajbongshi is thankful to University Grant Commission (UGC), India, for granting senior research fellowship (SRF) vide no. F./201516/NFO201517OBCASS37017/(SAIII/Website).

References

  1. 1.
    G. Xiaohui, L. Yizhong, H. Shuijian, L. Xiaokun, C. Wei, Anal. Chim. Acta 879, 118–125 (2015)CrossRefGoogle Scholar
  2. 2.
    D. Senthilnathan, A. Kalaiselvan, S. Angeline Vedha, P. Venuvanalingam, RSC Adv. 4, 9556–9563 (2014)CrossRefGoogle Scholar
  3. 3.
    J. Xu, Y. Zhou, S. Liu, M. Dong, C. Huang, Anal. Methods 6 2014 2086–2090Google Scholar
  4. 4.
    S. Pao Wu, Y. Pu Chen, Y. Ming Sung, Analyst 136, 1887–1891 (2011)CrossRefGoogle Scholar
  5. 5.
    E. Bozkurt, M. Arık, Y. Onganer, Sens. Actuators B 221, 136–147 (2015)CrossRefGoogle Scholar
  6. 6.
    K. Kim, Y. Sik Nam, Y. Lee, K. B. Lee, J. Anal. Methods Chem. 2017, 11 (2017) Article ID 3648564CrossRefGoogle Scholar
  7. 7.
    J. Li, Q. Wang, Z. Guo, H. Ma, Y. Zhang, B. Wang, Sci. Rep. 6, 23558 (2016)CrossRefGoogle Scholar
  8. 8.
    R. Wang, F. Yu, P. Liu, L. Chen, Chem. Commun. 48, 5310–5312 (2012)CrossRefGoogle Scholar
  9. 9.
    S. Altamura, M.U. Muckenthaler, J. Alzheimers Dis. 16, 879–895 (2009)CrossRefGoogle Scholar
  10. 10.
    M. Ghaedi, K. Mortazavi, M. Montazerozohori, A. Shokrollahi, M. Soylak, Mat. Sci. Eng. C 33, 2338–2344 (2013)CrossRefGoogle Scholar
  11. 11.
    J.E.T. Andersen, Analyst 130, 385–390 (2005)CrossRefGoogle Scholar
  12. 12.
    A. Spolaor, P. Vallelonga, J. Gabrieli, G. Cozzi, C. Boutron, C. Barbante, J. Anal. At. Spectrom. 27, 310–317 (2012)CrossRefGoogle Scholar
  13. 13.
    M.E. del Castillo Busto, M. Montes-Bayon, E. Blanco-Gonzalez, J. Meija, A. Sanz-Medel, Anal. Chem. 77, 5615–5621 (2005)CrossRefGoogle Scholar
  14. 14.
    A. Sil, V. Kumar Ijeri, A. Srivastava, Sens. Actuators B 106, 648–653 (2005)CrossRefGoogle Scholar
  15. 15.
    W. Lorenz, F. Mansfeld, Corros. Sci. 21, 647–672 (1981)CrossRefGoogle Scholar
  16. 16.
    X. Jing Yang, X. Meng Xu, J. Xu, Y. Fan Han, J. Am. Chem. Soc. 135, 16058–16061 (2013)CrossRefGoogle Scholar
  17. 17.
    C.M.G. van den Berg, Anal. Chem. 78, 156–162 (2006)CrossRefGoogle Scholar
  18. 18.
    M. Hee Lee, T. Van Giap, S. Hoon Kim, Y. Hoon Lee, C. Kang, J.S. Kim, Chem. Commun. 46, 1407–1409 (2010)CrossRefGoogle Scholar
  19. 19.
    C.Yan Li, C. Xiang Zou, Y. Fei Li, J. Liang Tang, C. Weng, Dyes Pigm. 104, 110–115 (2014)CrossRefGoogle Scholar
  20. 20.
    L. Qiu, C. Zhu, H. Chen, M. Hu, W. He, Z. Guo, Chem. Commun. 50, 4631–4634 (2014)CrossRefGoogle Scholar
  21. 21.
    M. Saleem, R. Abdullah, A. Ali, B. Joo Park, E. Ha Choi, I. Seok Hong, K.H. Lee, Bioorgan. Med. Chem. 22, 2045–2051 (2014)CrossRefGoogle Scholar
  22. 22.
    A. Weerasinghe, F. Abebe, E. Sinn, Tetrahedron Lett. 52, 5648–5651 (2011)CrossRefGoogle Scholar
  23. 23.
    W. Chen, X. Tu, X. Guo, Chem. Commun. 8, 1736–1743 (2009)CrossRefGoogle Scholar
  24. 24.
    C. Kyu Kim, R.R. Kalluru, J.P. Singh, A. Fortner, J. Griffin, G.K. Darbha, P. Chandra Ray. Nanotechnology 17, 3085–3093 (2006)CrossRefGoogle Scholar
  25. 25.
    B.S. Kim, S.Y. Lee, Y.H. Cho, J.Y. Youn, M.S. Kim, G. Khang, H.B. Lee, Nanotechnology 19, 045301–045306 (2008)CrossRefGoogle Scholar
  26. 26.
    K.T. Early, K.D. McCarthy, N.I. Hammer, M.Y. Odoi, R. Tangirala, T. Emrick, M.D. Barnes, Nanotechnology 18, 424027–424033 (2007)CrossRefGoogle Scholar
  27. 27.
    P. Wu, Y. Li, X.P Yan, Anal. Chem. 81 2009 6252–6257Google Scholar
  28. 28.
    T. Jamieson, R. Bakhshi, D. Petrova, R. Pocock, M. Imani, A.M. Seifalian, Biomaterials. 28, 4717–4732 (2007)CrossRefGoogle Scholar
  29. 29.
    T. Ming, H. Chen, R. Jiang, Q. Li, J. Wang, J. Phys. Chem. Lett. 3, 191–202 (2012)CrossRefGoogle Scholar
  30. 30.
    G. Schneider, G. Decher, Nano Lett. 6, 530–536 (2006)CrossRefGoogle Scholar
  31. 31.
    P. Reineck, D. Go´mez, S. Hock Ng, M. Karg, T. Bell, P. Mulvaney, U. Bach, ACS Nano 7, 6636–6648 (2013)CrossRefGoogle Scholar
  32. 32.
    J.R. Lakowicz, Plasmonics 1, 5–33 (2006)CrossRefGoogle Scholar
  33. 33.
    S. Lin, M.M. Wong, P.K. Pat, C.Y. Wong, S.K. Chiu, E.Y. Pun, J. Phys. Chem. C 115, 21604–21609 (2011)CrossRefGoogle Scholar
  34. 34.
    V.W.K. Ng, R. Berti, F. Lesage, A. Kakkar, J. Mater. Chem. B 1, 9–25 (2013)CrossRefGoogle Scholar
  35. 35.
    W. Qiang, H. Li, D. Xu, Anal. Methods 5, 629–635 (2013)CrossRefGoogle Scholar
  36. 36.
    Z.J. Zhang, J. Wang, C.Y. Chen, Theranostics 3, 223–238 (2013)CrossRefGoogle Scholar
  37. 37.
    W. Deng, D. Yong Jin, K. Drozdowicz-Tomsia, J. Li Yuan, J. Wu, E.M. Goldys, Adv. Mater. 23, 4649–4654 (2011)CrossRefGoogle Scholar
  38. 38.
    N. Sui, L. Wang, T. Yan, F. Liu, J. Sui, Y. Jiang, J. Wan, M. Liu, W.W. Yu, Sens. Actuators B 202, 1148–1153 (2014)CrossRefGoogle Scholar
  39. 39.
    Y. Pang, Z. Rong, R. Xiao, S. Wang, Sci. Rep. 5, 9451–9457 (2015)CrossRefGoogle Scholar
  40. 40.
    P. Li, S. Kumar, K. Soo Park, H.G. Park, RSC Adv. 8, 24322–24327 (2018)CrossRefGoogle Scholar
  41. 41.
    S. Chun Wei, P. Hung Hsu, Y. Fei Lee, Y. Wei Lin, C.C. Huang, ACS Appl. Mater. Interfaces 4, 2652–2658 (2012)CrossRefGoogle Scholar
  42. 42.
    S. Wang, X. Wang, Z. Zhang, L. Chen, Colloids Surf. A 468, 333–338 (2015)CrossRefGoogle Scholar
  43. 43.
    M.T. Shah, A. Balouch, E. Alveroglu, J. Mater. Chem. C 6, 1105–1112 (2018)CrossRefGoogle Scholar
  44. 44.
    R. Gopalakrishnan, K. Raghu, J. Nanosci. 8. (2014). Article ID 905404Google Scholar
  45. 45.
    M. Muzamil, N. Khalid, M.D. Aziz, S A. Abbas, IOP Conf. Ser. 60, 012034 (2014)CrossRefGoogle Scholar
  46. 46.
    G. Xu, Y. Chen, M. Tazawa, P. Jin, J Phys Chem B 110, 2051–2056 (2006)CrossRefGoogle Scholar
  47. 47.
    X.F. Zhang, Z.G. Liu, S. Gurunathan, Int. J. Mol. Sci. 17, 1534–1542 (2016)CrossRefGoogle Scholar
  48. 48.
    A.K. Ojha, S. Forster, S. Kumar, S. Vats, S. Negi, I. Fischer, J. Nanobiotechnol. 11, 7 (2013)CrossRefGoogle Scholar
  49. 49.
    X. Huang, M.A. El-Sayed, J. Adv. Res. 1, 13–28 (2010)CrossRefGoogle Scholar
  50. 50.
    C. Yu, J. Irudayaraj, Biophys. J. 93, 3684–3692 (2007)CrossRefGoogle Scholar
  51. 51.
    L. Zhou, H. Zhang, Y. Luan, S. Cheng, L.J. Fan, Nano-Micro Lett. 6 327–334 (2014)CrossRefGoogle Scholar
  52. 52.
    J.Ki Kim, D.J. Jang, J. Mater. Chem. C 5, 6037–6046 (2017)CrossRefGoogle Scholar
  53. 53.
    B. Wang, J. Hai, Z. Liu, Q. Wang, Z. Yang, S. Sun, Angew. Chem. Int. Ed. 49, 4576–4579 (2010)CrossRefGoogle Scholar
  54. 54.
    P.R. Chowdhury, K.G. Bhattacharyya, Dalton Trans. 44, 6809–6824 (2015)CrossRefGoogle Scholar
  55. 55.
    P. Buduru, S. Raja Redd, Sens. Actuators B 237, 935–943 (2016)CrossRefGoogle Scholar
  56. 56.
    W. Liyong, W. Nan, W. Shiqi, L. Danyang, C. Xiaomeng, W. Dan, H. Yuanyuan, J. Guang, J. Nanosci. Nanotechnol. 18, 4000–4005 (2018)CrossRefGoogle Scholar
  57. 57.
    N. Gogoi, M. Barooah, G. Majumdar, D. Choudhury, ACS Appl. Mater. Interfaces 7, 3058–3067 (2015)CrossRefGoogle Scholar
  58. 58.
    J.R. Lakowicz, Principles of Fluorescence Spectroscopy (Wiley, New Jersey, 1983)CrossRefGoogle Scholar
  59. 59.
    B. Paramanik, S. Bhattacharyya, A. Patra, Chem. Eur. J. 19, 5980–5987 (2013)CrossRefGoogle Scholar
  60. 60.
    A. Chaudhary, C. Dwivedi, M. Chawla, A. Gupta, C.K Nandi, J. Mater. Chem. C 3, 6962 (2015)CrossRefGoogle Scholar
  61. 61.
    B. Gole, A.K. Bar, P.S. Mukherjee, Chem. Eur. J. 20, 2276–2291 (2014)CrossRefGoogle Scholar
  62. 62.
    M. Koneswaran, R. Narayanaswamy, Sens. Actuators B 139, 104–109 (2009)CrossRefGoogle Scholar
  63. 63.
    R. Clark, C.S. Williams, Spectrochim. Acta 22, 1081–1090 (1966)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Applied SciencesGauhati UniversityGuwahatiIndia
  2. 2.Department of Electronics and Communication TechnologyGauhati UniversityGuwahatiIndia

Personalised recommendations