Advertisement

Electrode properties of a spinel family, AFe2O4 (A = Co, Ni, Cu), as new cathode for solid oxide fuel cells

  • Jinghao Cui
  • Yuhan Gong
  • Runze Shao
  • Shaoshuai Wang
  • Jialun Mao
  • Meng Yang
  • Weifeng Wang
  • Qingjun ZhouEmail author
Article
  • 9 Downloads

Abstract

In this work, the spinel-type oxides of AFe2O4 (A = Co, Ni, Cu) prepared via a glycine–nitrate process were investigated as possible cathode materials for solid oxide fuel cells. The as prepared sample, CoFe2O4 and NiFe2O4 are cubic spinel structure, while the CuFe2O4 is tetragonal spinel structure. The XRD results show that AFe2O4 (A = Co, Ni, Cu) is chemically compatible with La0.9Sr0.1Ga0.8Mg0.2O3−δ (LSGM) at fuel cell operation temperatures. At a given temperature, the order of the electrical conductivity of the ceramic samples was CuFe2O4 > CoFe2O4 > NiFe2O4. The electrical conductivity of CuFe2O4 reaches a maximum value of 2.7 S cm−1 at 850 °C in air. The order of average thermal expansion coefficient was CuFe2O4 < NiFe2O4 < CoFe2O4 in the temperature range of 30–1000 °C in air. The thermal expansion coefficients of the AFe2O4 (A = Co, Ni, Cu) samples are very close to that of typical electrolyte materials. CuFe2O4 exhibits the smallest area specific resistance among the three samples, i.e., 0.37 Ω cm2 at 800 °C in air. Peak power density of single cells with CuFe2O4 as cathode on a 300 µm-thick LSGM electrolyte reaches 326 mW cm−2 at 800 °C. In this series, CuFe2O4 exhibits a favorable oxygen reduction reaction activity, thus it may be a promising candidate in SOFCs.

Notes

Acknowledgements

The research was financially supported by the National Undergraduate Training Programs for Innovation and Entrepreneurship (Grant No. IECAUC2017027), Fundamental Research Funds for the Central Universities (Grant No. 3122017083) and Scientific Research Project of Tianjin Education Committee (Grant No. 2018KJ254).

References

  1. 1.
    Z.P. Shao, S.M. Haile, Nature 431, 170–173 (2004)Google Scholar
  2. 2.
    C.R. Xia, W. Rauch, F.L. Chen, M.L. Liu, Solid State Ion. 149, 11–19 (2002)Google Scholar
  3. 3.
    L.D. Fan, B. Zhu, P.C. Su, C.X. He, Nano Energy 45, 148–176 (2018)Google Scholar
  4. 4.
    Q.J. Zhou, T.M. He, Y. Ji, J. Power Sources 185, 754–758 (2008)Google Scholar
  5. 5.
    L.D. Fan, M.M. Chen, H.J. Zhang, C.Y. Wang, C.X. He, Int. J. Hydrog. Energy 42, 17544–17551 (2017)Google Scholar
  6. 6.
    Y. Wu, B. Dong, J. Zhang, H.B. Song, C.J. Yan, Int. J. Hydrog. Energy 43, 12627–12636 (2018)Google Scholar
  7. 7.
    J. Zhang, H.B. Song, R. Xu, C.J. Yan, Y. Wu, Int. J. Hydrog. Energy 43, 12789–12796 (2018)Google Scholar
  8. 8.
    Y. Wu, J. Zhang, L.Y. Li, J. Wei, J.F. Li, X. Yang, C.J. Yan, C.G. Zhou, B. Zhu, ACS Appl. Energy Mater. 1, 580–588 (2018)Google Scholar
  9. 9.
    C. Zhao, Q.J. Zhou, T. Zhang, L.W. Qu, X. Yang, T. Wei, Mater. Res. Bull. 113, 25–30 (2019)Google Scholar
  10. 10.
    R. Xu, Y. Wu, X.Y. Wang, J. Zhang, X. Yang, B. Zhu, Int. J. Hydrog. Energy 42, 17495–17503 (2017)Google Scholar
  11. 11.
    P.D. Lund, B. Zhu, Y.D. Li, S.N. Yun, A.G. Nasibulin, R. Raza, M. Leskela, M. Ni, Y. Wu, G. Chen, L.D. Fan, J. Kim, S. Basu, T. Kallio, I. Pamuk, ACS Energy Lett. 2, 2752–2755 (2017)Google Scholar
  12. 12.
    Q.J. Zhou, Y. Gao, F. Wang, D.M. An, Y. Li, Y.L. Zou, Z.P. Li, W.B. Wang, Ceram. Int. 41, 639–643 (2015)Google Scholar
  13. 13.
    X.Y. Wang, M. Afzal, H. Deng, W.J. Dong, B.Y. Wang, Y.Q. Mi, Z.Y. Xu, W. Zhang, C. Feng, Z.Q. Wang, Y. Wu, B. Zhu, Int. J. Hydrog. Energy 42, 17552–17558 (2017)Google Scholar
  14. 14.
    J. Zhang, W. Zhang, R. Xu, X.Y. Wang, X. Yang, Y. Wu, Int. J. Hydrog. Energy 42, 22185–22191 (2017)Google Scholar
  15. 15.
    Y.Y. Liu, Y. Wu, W. Zhang, J. Zhang, B.Y. Wang, C. Xia, M. Afzal, J.J. Li, M. Singh, B. Zhu, Int. J. Hydrog. Energy 42, 17514–17521 (2017)Google Scholar
  16. 16.
    L. Qiu, T. Ichikawa, A. Hirano, N. Imanishi, Y. Takeda, Solid State Ion. 158, 55–65 (2003)Google Scholar
  17. 17.
    H. Lv, Y.J. Wu, B. Huang, B.Y. Zhao, K.A. Hu, Solid State Ion. 177, 901–906 (2006)Google Scholar
  18. 18.
    W. Zhou, R. Ran, Z. Shao, J. Power Sources 192, 231–246 (2009)Google Scholar
  19. 19.
    J.H. Kim, A. Manthiram, J. Mater. Chem. A3, 24195–24210 (2015)Google Scholar
  20. 20.
    Q.J. Zhou, F. Wang, Y. Shen, T.M. He, J. Power Sources 195, 2174–2181 (2010)Google Scholar
  21. 21.
    S.P. Jiang, J.P. Zhang, X. Zheng, J. Eur. Ceram. Soc. 22, 361–373 (2002)Google Scholar
  22. 22.
    C.C. Wang, T. Becker, K.F. Chen, L. Zhao, B. Wei, S.P. Jiang, Electrochim. Acta 139, 173–179 (2014)Google Scholar
  23. 23.
    S. Švarcová, K. Wiik, J. Tolchard, H.J. Bouwmeester, T. Grande, Solid State Ion. 178, 1787–1791 (2008)Google Scholar
  24. 24.
    E. Bucher, A. Egger, G.B. Caraman, W. Sitte, J. Electrochem. Soc. 155, B1218–B1224 (2008)Google Scholar
  25. 25.
    Z.G. Yang, G.G. Xia, X.H. Li, J.W. Stevenson, Int. J. Hydrog. Energy 32, 3648–3654 (2007)Google Scholar
  26. 26.
    Z. Yang, G. Xia, J.W. Stevenson, Electrochem. Solid-State Lett. 8, A168–A170 (2005)Google Scholar
  27. 27.
    W. Qu, L. Jian, J.M. Hill, D.G. Ivey, J. Power Sources 153, 114–124 (2006)Google Scholar
  28. 28.
    H. Zhang, Z.L. Zhan, X.B. Liu, J. Power Sources 196, 8041–8047 (2011)Google Scholar
  29. 29.
    J.H. Xiao, W.Y. Zhang, C.Y. Xiong, B. Chi, J. Pu, L. Jian, Int. J. Hydrog. Energy 41, 9611–9618 (2016)Google Scholar
  30. 30.
    B. Hua, W.Y. Zhang, J. Wu, J. Pu, B. Chi, L. Jian, J. Power Sources 195, 7375–7379 (2010)Google Scholar
  31. 31.
    Z.H. Sun, S. Gopalan, U.B. Pal, S.N. Basu, Surf. Coat.Technol. 323, 49–57 (2017)Google Scholar
  32. 32.
    H.Y. Liu, X.F. Zhu, M.J. Cheng, Y. Cong, W.S. Yang, Chem. Commun. 47, 2378–2380 (2011)Google Scholar
  33. 33.
    H.Y. Liu, X.F. Zhu, M.J. Cheng, Y. Cong, W.S. Yang, Int. J. Hydrog. Energy 38, 1052–1057 (2013)Google Scholar
  34. 34.
    Y.Y. Rao, Z.B. Wang, L. Chen, R.F. Wu, R.R. Peng, Y.L. Lu, Int. J. Hydrog. Energy 38, 14329–14336 (2013)Google Scholar
  35. 35.
    X.J. Liu, D. Han, H. Wu, X. Meng, F.R. Zeng, Z.L. Zhan, Int. J. Hydrog. Energy 38, 16563–16568 (2013)Google Scholar
  36. 36.
    L. Shao, Q. Wang, L.S. Fan, P.X. Wang, N.Q. Zhang, K.N. Sun, Chem. Commun. 52, 8615–8618 (2016)Google Scholar
  37. 37.
    S.Y. Zhen, W. Sun, P.Q. Li, G.Z. Tang, D. Rooney, K.N. Sun, X.X. Ma, J. Power Sources 315, 140–144 (2016)Google Scholar
  38. 38.
    L. Shao, P.X. Wang, Q. Zhang, L.S. Fan, N.Q. Zhang, K.N. Sun, J. Power Sources 343, 268–274 (2017)Google Scholar
  39. 39.
    Q.J. Zhou, T. Wei, Z.P. Li, D.M. An, X.Q. Tong, Z.H. Ji, W.B. Wang, H. Lu, L.Y. Sun, Z.Y. Zhang, K. Xu, J. Alloys Compd. 627, 320–323 (2015)Google Scholar
  40. 40.
    Y. Cheng, Q.J. Zhou, W.D. Li, T. Wei, Z.P. Li, D.M. An, X.Q. Tong, Z.H. Ji, X. Han, J. Alloys Compd. 641, 234–237 (2015)Google Scholar
  41. 41.
    F.M. Ye, Q.J. Zhou, K. Xu, Z.Y. Zhang, X. Han, L. Yang, J. Xu, H.Y. Xu, K.J. Wu, Y.J. Guan, J. Alloys Compd. 680, 163–168 (2016)Google Scholar
  42. 42.
    X. Yang, J.C. Liu, F.L. Chen, Y.H. Du, A. Deibel, T.M. He, Electrochim. Acta 290, 440–450 (2018)Google Scholar
  43. 43.
    A. Petric, H. Ling, J. Am. Ceram. Soc. 90, 1515–1520 (2007)Google Scholar
  44. 44.
    Y. Cheng, Q.J. Zhou, L.B. Chen, Y.T. Xie, Mater. Lett. 193, 105–107 (2017)Google Scholar
  45. 45.
    F.F. Dong, D.J. Chen, Y.B. Chen, Q. Zhao, Z.P. Shao, J. Mater. Chem. 22, 15071–15079 (2012)Google Scholar
  46. 46.
    Q.J. Zhou, L.B. Chen, Y. Cheng, Y.T. Xie, Ceram. Int. 42, 10469–10471 (2016)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Jinghao Cui
    • 1
  • Yuhan Gong
    • 1
  • Runze Shao
    • 1
  • Shaoshuai Wang
    • 1
  • Jialun Mao
    • 1
  • Meng Yang
    • 1
  • Weifeng Wang
    • 1
  • Qingjun Zhou
    • 1
    Email author
  1. 1.College of ScienceCivil Aviation University of ChinaTianjinPeople’s Republic of China

Personalised recommendations