Dielectric properties of low Zr-substituted BaTi4O9 at microwave frequencies

  • Yuan-Bin ChenEmail author
  • Shih-Sheng LiuEmail author


The microwave dielectric properties and microstructures of Ba(Ti1−xZrx)4O9 (0≤ x ≤ 0.025) ceramics prepared using the conventional solid-state route were investigated. When x was increased from 0 to 0.0125, the Q × f value of the specimen increased from 32,600 GHz to a maximum of 63,700 GHz, and the εr value increased from 34.6 to 35.5. The structure and microstructure were analyzed using X-ray diffraction and scanning electron microscopy. The dielectric properties were correlated with various x values. With x = 0.0125, the excellent microwave dielectric properties of εr ~ 35.5, Q × f ~ 63,700 GHz (at 8 GHz), and τf ~ 13 ppm/°C were obtained for Ba(Ti0.9875Zr0.0125)4O9 ceramics sintered at 1300 °C for 4 h.



  1. 1.
    S. Nishigaki, H. Kato, S. Yano, R. Kamimure, Microwave dielectric properties of (Ba,Sr)O-Sm2O3-TiO2 ceramics. Am. Ceram. Soc. Bull. 66(90), 1405–1410 (1987)Google Scholar
  2. 2.
    K. Wakino, K. Minai, H. Tamura, Microwave characteristics of (Zr, Sn)TiO4 and BaO-PbO-Nd2O3-TiO2 dielectric resonators. J. Am. Ceram. Soc. 67(4), 278–281 (1984)CrossRefGoogle Scholar
  3. 3.
    T. Takada, S.F. Wang, S. Yoshikawa, S.-J. Jang, R.E. Newnham, Effect of glass additions on BaO-TiO2-WO3 microwave ceramics. J. Am. Ceram. Soc. 77(7), 1909–1916 (1994)CrossRefGoogle Scholar
  4. 4.
    M.H. Weng, T.J. Liang, C.L. Huang, Lowering of sintering temperature and microwave dielectric properties of BaTi4O9 ceramics prepared by the polymeric precursor method. J. Eur. Ceram. Soc. 22, 1693–1698 (2002)CrossRefGoogle Scholar
  5. 5.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, Five-component domino synthesis of tetrahydropyridines using hexagonal PbCr x Fe12−x O19 as efficient magnetic nanocatalyst. Res. Chem. Intermed. 43(11), 6155–6165 (2017)CrossRefGoogle Scholar
  6. 6.
    S.M. Hosseinpour-Mashkani, M. Maddahfar, A. Sobhani-Nasab, Novel silver-doped CdMoO4: synthesis, characterization, and its photocatalytic performance for methyl orange degradation through the sonochemical method. J. Mater. Sci. Mater. Electron. 27, 474–480 (2016)CrossRefGoogle Scholar
  7. 7.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, S.M. Hosseinpour-Mashkani, ZnFe2−xLaxO4 nanostructure: synthesis, characterization, and its magnetic properties. J. Mater. Sci. Mater. Electron. 26, 9776–9781 (2015)CrossRefGoogle Scholar
  8. 8.
    M. Rahimi-Nasrabadi, M. Behpour, A. Sobhani-Nasab, M.R. Jeddy, Nanocrystalline Ce-doped copper ferrite: synthesis, characterization, and its photocatalyst application. J. Mater. Sci. Mater. Electron. 27, 11691–11697 (2016)CrossRefGoogle Scholar
  9. 9.
    A. Sobhani-Nasab, A. Ziarati, M. Rahimi-Nasrabadi, M.R. Ganjali, A. Badiei, Sonication method synergism with rare earth based nanocatalyst: preparation of NiFe2−xEuxO4 nanostructures and its catalytic applications for the synthesis of benzimidazoles, benzoxazoles, and benzothiazoles under ultrasonic irradiation. J. Rare Earths 35(4), 374–381 (2017)CrossRefGoogle Scholar
  10. 10.
    R.D. Shannon, Dielectric polarizabilities of ions in oxides and fluorides. J. Appl. Phys. 73, 348–366 (1993)CrossRefGoogle Scholar
  11. 11.
    B.W. Hakki, P.D. Coleman, A dielectric resonator method of measuring inductive capacities in the millimeter range. IEEE Trans. Microwave Theory Tech. 8(4), 402–410 (1960)CrossRefGoogle Scholar
  12. 12.
    W.E. Courtney, Analysis and evaluation of a method of measuring the complex permittivity and permeability of microwave insulators. IEEE Trans. Microwave Theory Tech. 18(8), 476–485 (1970)CrossRefGoogle Scholar
  13. 13.
    R. Umemura, H. Ogawa, A. Kan, Low temperature sintering and microwave dielectric properties of (Mg3−xZnx)(VO4)2 ceramics. J. Eur. Ceram. Soc. 26, 2063–2068 (2006)CrossRefGoogle Scholar
  14. 14.
    S.H. Yoon, D.W. Kim, S.Y. Cho, K.S. Hong, Investigation of the relations between structure and microwave dielectric properties of divalent metal tungstate compounds. J. Eur. Ceram. Soc. 26, 2051–2054 (2006)CrossRefGoogle Scholar
  15. 15.
    Ceramics, Structure and microwave dielectric properties of Ca1−xYxTi1−xAlxO3 (CYTA). J. Mater. Res. 20, 2391–2399 (2005)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Electronic & Information EngineeringFoshan UniversityFoshanChina
  2. 2.College of Electronics and Electrical EngineeringZhaoqing UniversityZhaoqingChina

Personalised recommendations