Advertisement

Facial growth of Co(OH)2 nanoflakes on stainless steel for supercapacitors: effect of deposition potential

  • N. C. Maile
  • R. T. Patil
  • S. K. Shinde
  • D. -Y. Kim
  • A. V. Fulari
  • D. S. Lee
  • V. J. FulariEmail author
Article
  • 42 Downloads

Abstract

In this work, the nanoflakes of Co(OH)2 have been grown successfully on a stainless steel (SS) substrate at an ambient temperature. The novel architecture, binder free synthesis and considerable capacitance of Co(OH)2 nanoflakes render them as a potential candidate to be used as an electrode material for supercapacitor application. It is observed that the different cathodic potentials have a dramatic impact on the growth mechanism of Co(OH)2 nanoflakes. The prepared thin films were subjected for their structural and morphological study using X-ray diffraction, field emission scanning electron microscope, energy dispersive X-ray spectroscopy, etc. The supercapacitive properties of Co(OH)2 nanoflakes have been studied using cyclic voltammetry, galvanostatic charge–discharge and electrochemical impedance spectroscopy techniques. The Co(OH)2 nanoflakes evaluated a maximum specific capacitance of 275 F g−1 for 5 mV s−1 in 1 M KOH.

Notes

Acknowledgements

Authors are grateful to UGC for financial assistance through UGC major research project (F.No. 43-532/2014 (SR) MRP-MAJOR-PHYS-2013-35168 dated 07/10/2015).

References

  1. 1.
    D.P. Dubal, O. Ayyad, V. Ruiz, P. Gómez-Romero, Hybrid energy storage: the merging of battery and supercapacitor chemistries. Chem. Soc. Rev. 44, 1777–1790 (2015).  https://doi.org/10.1039/C4CS00266K CrossRefGoogle Scholar
  2. 2.
    G. Wang, L. Zhang, J. Zhang, A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 41, 797–828 (2012).  https://doi.org/10.1039/C1CS15060J CrossRefGoogle Scholar
  3. 3.
    M. Meyyappan, Nanostructured materials for supercapacitors. J. Vac. Sci. Technol. A 31, 050803 (2013).  https://doi.org/10.1116/1.4802772 CrossRefGoogle Scholar
  4. 4.
    Z. Jia, W. Lu, Y. Wang, Y. Liang, Y. Li, S. Feng, Porous hierarchical structure Ni(OH)2 nanosheet array electrode with excellent electrochemical energy storage performance. Electrochim. Acta 159, 35–39 (2015).  https://doi.org/10.1016/j.electacta.2015.01.199 CrossRefGoogle Scholar
  5. 5.
    C. Wang, F. Li, Y. Wang, H. Qu, X. Yi, Y. Lu, Y. Qiu, Z. Zou, B. Yu, Y. Luo, Facile synthesis of nanographene sheet hybrid α-MnO2 nanotube and nanoparticle as high performance electrode materials for supercapacitor. J. Alloys Compd. 634, 12–18 (2015).  https://doi.org/10.1016/j.jallcom.2015.02.079 CrossRefGoogle Scholar
  6. 6.
    C.C. Hu, J.C. Chen, K.H. Chang, Cathodic deposition of Ni(OH)2 and Co(OH)2 for asymmetric supercapacitors: importance of the electrochemical reversibility of redox couples. J. Power Sources 221, 128–133 (2013).  https://doi.org/10.1016/j.jpowsour.2012.07.111 CrossRefGoogle Scholar
  7. 7.
    J. Jiang, J. Liu, W. Zhou, J. Zhu, X. Huang, X. Qi, H. Zhang, T. Yu, CNT/Ni hybrid nanostructured arrays: synthesis and application as high-performance electrode materials for pseudocapacitors. Energy Environ. Sci. 4, 5000 (2011).  https://doi.org/10.1039/c1ee02293h CrossRefGoogle Scholar
  8. 8.
    M.M. Sk, C.Y. Yue, K. Ghosh, R.K. Jena, Review on advances in porous nanostructured nickel oxides and their composite electrodes for high-performance supercapacitors. J. Power Sources 308, 121–140 (2016).  https://doi.org/10.1016/j.jpowsour.2016.01.056 CrossRefGoogle Scholar
  9. 9.
    Z. Gao, W. Yang, Y. Yan, J. Wang, J. Ma, X. Zhang, B. Xing, L. Liu, Synthesis and exfoliation of layered α-Co(OH)2 nanosheets and their electrochemical performance for supercapacitors, Eur. J. Inorg. Chem. 2013, 4832–4838 (2013)  https://doi.org/10.1002/ejic.201300525 CrossRefGoogle Scholar
  10. 10.
    U.M. Patil, S.C. Lee, J.S. Sohn, S.B. Kulkarni, K.V. Gurav, J.H. Kim, J.H. Kim, S. Lee, S.C. Jun, Enhanced symmetric supercapacitive performance of Co(OH)2 nanorods decorated conducting porous graphene foam electrodes. Electrochim. Acta 129, 334–342 (2014).  https://doi.org/10.1016/J.ELECTACTA.2014.02.063 CrossRefGoogle Scholar
  11. 11.
    H. Xie, S. Tang, Z. Gong, S. Vongehr, F. Fang, M. Li, X. Meng, 3D nitrogen-doped graphene/Co(OH)2 -nanoplate composites for high-performance electrochemical pseudocapacitors. RSC Adv. 4, 61753–61758 (2014).  https://doi.org/10.1039/C4RA10333E CrossRefGoogle Scholar
  12. 12.
    C. Xu, Y. Cao, Y. Chen, W. Huang, D. Chen, Q. Huang, J. Tu, Fast synthesis of hierarchical Co(OH)2 nanosheet hollow spheres with enhanced glucose sensing. Eur. J. Inorg. Chem. 2016, 3163–3168 (2016).  https://doi.org/10.1002/ejic.201600298 CrossRefGoogle Scholar
  13. 13.
    C. Nethravathi, C.R. Rajamathi, M. Rajamathi, X. Wang, U.K. Gautam, D. Golberg, Y. Bando, Cobalt hydroxide/oxide hexagonal ring–graphene hybrids through chemical etching of metal hydroxide platelets by graphene oxide: energy storage applications. ACS Nano. 8, 2755–2765 (2014).  https://doi.org/10.1021/nn406480g CrossRefGoogle Scholar
  14. 14.
    C. Liu, F. Wang, Y. Qiu, Q. Liang, N. Mitsuzak, Z. Chen, Facile electrodeposition of cobalt hydroxide on anodic TiO2 nanotubes arrays for enhanced photoelectrochemical application. J. Photochem. Photobiol. A 353, 200–205 (2018).  https://doi.org/10.1016/j.jphotochem.2017.11.022 CrossRefGoogle Scholar
  15. 15.
    Y. Li, S. Li, Y. Zhang, M. Yu, J. Liu, Fabrication of superhydrophobic layered double hydroxides films with different metal cations on anodized aluminum 2198 alloy. Mater. Lett. 142, 137–140 (2015).  https://doi.org/10.1016/j.matlet.2014.11.148 CrossRefGoogle Scholar
  16. 16.
    L. Saghatforoush, M. Hasanzadeh, G. Karim-Nezhad, S. Ershad, N. Shadjou, B. Khalilzadeh, M. Hajjizadeh, Kinetic study of the electrooxidation of mefenamic acid and indomethacin catalysed on cobalt hydroxide modified glassy carbon electrode. Bull. Korean Chem. Soc. 30, 1341–1348 (2009).  https://doi.org/10.5012/bkcs.2009.30.6.1341 CrossRefGoogle Scholar
  17. 17.
    H. Wender, R.V. Gonçalves, C.S.B. Dias, M.J.M. Zapata, L.F. Zagonel, E.C. Mendonça, S.R. Teixeira, F. Garcia, Photocatalytic hydrogen production of Co(OH)2 nanoparticle-coated α-Fe2O3 nanorings. Nanoscale 5, 9310 (2013).  https://doi.org/10.1039/c3nr02195e CrossRefGoogle Scholar
  18. 18.
    M. Ifires, T. Hadjersi, R. Chegroune, S. Lamrani, F. Moulai, M. Mebarki, A. Manseri, One-step electrodeposition of superhydrophobic NiO-Co(OH)2 urchin-like structures on Si nanowires as photocatalyst for RhB degradation under visible light. J. Alloys Compd. 774, 908–917 (2019).  https://doi.org/10.1016/j.jallcom.2018.10.029 CrossRefGoogle Scholar
  19. 19.
    N.C. Maile, S.K. Shinde, R.R. Koli, A.V. Fulari, D.Y. Kim, V.J. Fulari, Effect of different electrolytes and deposition time on the supercapacitor properties of nanoflake-like Co(OH)2 electrodes. Ultrason. Sonochem. 51, 49–57 (2019).  https://doi.org/10.1016/j.ultsonch.2018.09.003 CrossRefGoogle Scholar
  20. 20.
    M. Suksomboon, J. Khuntilo, S. Kalasina, P. Suktha, J. Limtrakul, M. Sawangphruk, High-performance energy storage of Ag-doped Co(OH)2-coated graphene paper: in situ electrochemical X-ray absorption spectroscopy. Electrochim. Acta 252, 91–100 (2017).  https://doi.org/10.1016/j.electacta.2017.08.184 CrossRefGoogle Scholar
  21. 21.
    X. Li, H. He, Hydrous RuO2 nanoparticles coated on Co(OH)2 nanoflakes as advanced electrode material of supercapacitors. Appl. Surf. Sci. 470, 306–317 (2019).  https://doi.org/10.1016/j.apsusc.2018.11.142 CrossRefGoogle Scholar
  22. 22.
    L. Dong, Y. Li, T. J. Liu, A.-L. Wei, L.-T. Kang, Solvothermal synthesis and electrochemical property of Co(OH)2/activated carbon composites. Rengong Jingti Xuebao/J. Synth. Cryst. 44(8), 2217–2224 (2015)Google Scholar
  23. 23.
    W. Weng et al., Supercapacitance performances of electrodeposited Co(OH)2/three-dimensional graphene nanocomposite. Int. J. Electrochem. Sci. 13, 10601–10611 (2018).  https://doi.org/10.20964/2018.11.50 CrossRefGoogle Scholar
  24. 24.
    H. Zhang, Z. Li, R. Zeng, Highly efficient, mild synthesis of β-Co(OH)2 nanoplatelets with an application to supercapacitor electrode. Cailiao Daobao/Mater. Rev. 31, 15–25 (2017).  https://doi.org/10.11896/j.issn.1005-023X.2017.022.004 Google Scholar
  25. 25.
    L.-B. Kong, J.-W. Lang, M. Liu, Y.-C. Luo, L. Kang, Facile approach to prepare loose-packed cobalt hydroxide nano-flakes materials for electrochemical capacitors. J. Power Sources 194, 1194–1201 (2009).  https://doi.org/10.1016/j.jpowsour.2009.06.016 CrossRefGoogle Scholar
  26. 26.
    L. Tian, J.L. Zhu, L. Chen, B. An, Q.Q. Liu, K.L. Huang, Synthesis and characterization of α-cobalt hydroxide nanobelts. J. Nanoparticle Res. 13, 3483–3488 (2011).  https://doi.org/10.1007/s11051-011-0269-3 CrossRefGoogle Scholar
  27. 27.
    R.R. Salunkhe, B.P. Bastakoti, C.-T. Hsu, N. Suzuki, J.H. Kim, S.X. Dou, C.-C. Hu, Y. Yamauchi, Direct growth of cobalt hydroxide rods on nickel foam and its application for energy storage, Chem.: Eur. J. 20, 3084–3088 (2014).  https://doi.org/10.1002/chem.201303652 CrossRefGoogle Scholar
  28. 28.
    W. Yang, Y. Feng, N. Wang, H. Yuan, D. Xiao, Facile microwave-assisted synthesis of sheet-like cobalt hydroxide for energy-storage application: effect of the cobalt precursors. J. Alloys Compd. 644, 836–845 (2015).  https://doi.org/10.1016/j.jallcom.2015.05.055 CrossRefGoogle Scholar
  29. 29.
    T. Mahalingam, V. Dhanasekaran, G. Ravi, S. Lee, J.P. Chu, H. Lim, Effect of deposition potential on the physical properties of electrodeposited CuO thin films. J. Optoelectron. Adv. Mater. 12, 1327–1332 (2010)Google Scholar
  30. 30.
    D. Zhao, W. Zhou, H. Li, Effects of deposition potential and anneal temperature on the hexagonal nanoporous nickel hydroxide films. Chem. Mater. 19, 3882–3891 (2007).  https://doi.org/10.1021/cm062720w CrossRefGoogle Scholar
  31. 31.
    A. Prună, D. Pullini, D.B. Mataix, Influence of deposition potential on structure of ZnO nanowires synthesized in track-etched membranes. J. Electrochem. Soc. 159, E92 (2012).  https://doi.org/10.1149/2.003205jes CrossRefGoogle Scholar
  32. 32.
    A. Lim, T. Zheng, Y. Andou, R.M. Zawawi, Effects of deposition parameters on the electrochemical behaviour of ZnO thin film. J. Adv. Chem. Sci. 3, 521–524 (2017)Google Scholar
  33. 33.
    S.K. Shinde, J.V. Thombare, D.P. Dubal, V.J. Fulari, Electrochemical synthesis of photosensitive nano-nest like CdSe0.6Te0.4 thin films. Appl. Surf. Sci. 282, 561–565 (2013).  https://doi.org/10.1016/j.apsusc.2013.06.010 CrossRefGoogle Scholar
  34. 34.
    C. Yan, H. Jiang, T. Zhao, C. Li, J. Ma, P.S. Lee, Binder-free Co(OH)2 nanoflake–ITO nanowire heterostructured electrodes for electrochemical energy storage with improved high-rate capabilities. J. Mater. Chem. 21, 10482 (2011).  https://doi.org/10.1039/c0jm04442c CrossRefGoogle Scholar
  35. 35.
    S.K. Shinde, D.Y. Kim, G.S. Ghodake, N.C. Maile, A.A. Kadam, D.S. Lee, M.C. Rath, V.J. Fulari, Morphological enhancement to CuO nanostructures by electron beam irradiation for biocompatibility and electrochemical performance. Ultrason. Sonochem. 40, 314–322 (2018).  https://doi.org/10.1016/j.ultsonch.2017.07.014 CrossRefGoogle Scholar
  36. 36.
    S. Yue, H. Tong, Z. Gao, W. Bai, L. Lu, J. Wang, X. Zhang, Fabrication of flexible nanoporous nitrogen-doped graphene film for high-performance supercapacitors. J. Solid State Electrochem. 21, 1653–1663 (2017).  https://doi.org/10.1007/s10008-017-3538-y CrossRefGoogle Scholar
  37. 37.
    S. Ratha, S.R. Marri, N.A. Lanzillo, S. Moshkalev, S.K. Nayak, J.N. Behera, C.S. Rout, Supercapacitors based on patronite–reduced graphene oxide hybrids: experimental and theoretical insights. J. Mater. Chem. A. 3, 18874–18881 (2015).  https://doi.org/10.1039/C5TA03221K CrossRefGoogle Scholar
  38. 38.
    T. Zhao, H. Jiang, J. Ma, Surfactant-assisted electrochemical deposition of α-cobalt hydroxide for supercapacitors. J. Power Sources 196, 860–864 (2011).  https://doi.org/10.1016/j.jpowsour.2010.06.042 CrossRefGoogle Scholar
  39. 39.
    J.R.S. Brownson, C. Lévy-Clément, Electrodeposition of α- and β-cobalt hydroxide thin films via dilute nitrate solution reduction. Phys. Status Solidi 245, 1785–1791 (2008).  https://doi.org/10.1002/pssb.200879534 CrossRefGoogle Scholar
  40. 40.
    M. Aghazadeh, M. Ghaemi, B. Sabour, S. Dalvand, Electrochemical preparation of α-Ni(OH)2 ultrafine nanoparticles for high-performance supercapacitors. J. Solid State Electrochem. 18, 1569–1584 (2014).  https://doi.org/10.1007/s10008-014-2381-7 CrossRefGoogle Scholar
  41. 41.
    J.-K. Chang, C.-M. Wu, I.-W. Sun, Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. J. Mater. Chem. 20, 3729 (2010).  https://doi.org/10.1039/b925176f CrossRefGoogle Scholar
  42. 42.
    A.D. Jagadale, V.S. Kumbhar, R.N. Bulakhe, C.D. Lokhande, Influence of electrodeposition modes on the supercapacitive performance of Co3O4 electrodes. Energy 64, 234–241 (2014).  https://doi.org/10.1016/j.energy.2013.10.016 CrossRefGoogle Scholar
  43. 43.
    F. Walsh, Industrial Electrochemistry (Springer, Dordrecht, 1983).  https://doi.org/10.1179/000705983798273958 Google Scholar
  44. 44.
    B. Scharifker, G. Hills, Theoretical and experimental studies of multiple nucleation. Electrochim. Acta 28, 879–889 (1983).  https://doi.org/10.1016/0013-4686(83)85163-9 CrossRefGoogle Scholar
  45. 45.
    T. Nguyen, M. Boudard, M.J. Carmezim, M.F. Montemor, Layered Ni(OH)2-Co(OH)2 films prepared by electrodeposition as charge storage electrodes for hybrid supercapacitors. Sci. Rep. 7, 39980 (2017).  https://doi.org/10.1038/srep39980 CrossRefGoogle Scholar
  46. 46.
    T.N. Ramesh, Synthesis and thermal stability study of cobalt hydroxynitrate in different polytypic modifications. Inorg. Chem. Commun. 14, 419–422 (2011).  https://doi.org/10.1016/j.inoche.2010.12.016 CrossRefGoogle Scholar
  47. 47.
    C. Li, X. Zhang, K. Wang, H. Zhang, X. Sun, Y. Ma, Dandelion-like cobalt hydroxide nanostructures: morphological evolution, soft template effect and supercapacitive application. RSC Adv. 4, 59603–59613 (2014).  https://doi.org/10.1039/C4RA10393A CrossRefGoogle Scholar
  48. 48.
    P. Dai, T. Yan, L. Hu, Z. Pang, Z. Bao, M. Wu, G. Li, J. Fang, Z. Peng, Phase engineering of cobalt hydroxides using magnetic fields for enhanced supercapacitor performance. J. Mater. Chem. A. 5, 19203–19209 (2017).  https://doi.org/10.1039/C7TA03656F CrossRefGoogle Scholar
  49. 49.
    U.M. Patil, R.V. Ghorpade, M.S. Nam, A.C. Nalawade, S. Lee, H. Han, S.C. Jun, PolyHIPE derived freestanding 3D carbon foam for cobalt hydroxide nanorods based high performance supercapacitor. Sci. Rep. 6, 35490 (2016).  https://doi.org/10.1038/srep35490 CrossRefGoogle Scholar
  50. 50.
    H.B. Li, P. Liu, Y. Liang, J. Xiao, G.W. Yang, Amorphous cobalt hydroxide nanostructures and magnetism from green electrochemistry. RSC Adv. 3, 26412 (2013).  https://doi.org/10.1039/c3ra44355h CrossRefGoogle Scholar
  51. 51.
    J.W. Murray, J.G. Dillard, The oxidation of cobalt(II) adsorbed on manganese dioxide. Geochim. Cosmochim. Acta 43, 781–787 (1979).  https://doi.org/10.1016/0016-7037(79)90261-8 CrossRefGoogle Scholar
  52. 52.
    L. Jiang, S. Shanmuganathan, G.W. Nelson, S.O. Han, H. Kim, I. Na Sim, J.S. Foord, Hybrid system of nickel–cobalt hydroxide on carbonised natural cellulose materials for supercapacitors. J. Solid State Electrochem. 22, 387–393 (2018).  https://doi.org/10.1007/s10008-017-3723-z CrossRefGoogle Scholar
  53. 53.
    A.D. Jagadale, V.S. Jamadade, S.N. Pusawale, C.D. Lokhande, Effect of scan rate on the morphology of potentiodynamically deposited β-Co(OH)2 and corresponding supercapacitive performance. Electrochim. Acta 78, 92–97 (2012).  https://doi.org/10.1016/j.electacta.2012.05.137 CrossRefGoogle Scholar
  54. 54.
    T. Nguyen, M. Boudard, L. Rapenne, O. Chaix-Pluchery, M.J. Carmezim, M.F. Montemor, Structural evolution, magnetic properties and electrochemical response of MnCo2O4 nanosheet films. RSC Adv. 5, 27844–27852 (2015).  https://doi.org/10.1039/C5RA03047A CrossRefGoogle Scholar
  55. 55.
    Y. Lei, B. Daffos, P.L. Taberna, P. Simon, F. Favier, MnO2-coated Ni nanorods: enhanced high rate behavior in pseudo-capacitive supercapacitor. Electrochim. Acta 55, 7454–7459 (2010).  https://doi.org/10.1016/j.electacta.2010.03.012 CrossRefGoogle Scholar
  56. 56.
    M. Sheikhzadeh, S. Sanjabi, M. Gorji, S. Khabazian, Nano composite foam layer of CuO/graphene oxide (GO) for high performance supercapacitor. Synth. Met. 244, 10–14 (2018).  https://doi.org/10.1016/j.synthmet.2018.06.009 CrossRefGoogle Scholar
  57. 57.
    Y.-Z. Wu, Y. Ding, T. Hayat, A. Alsaedi, S.-Y. Dai, Enlarged working potential window for MnO2 supercapacitors with neutral aqueous electrolytes. Appl. Surf. Sci. 459, 430–437 (2018).  https://doi.org/10.1016/j.apsusc.2018.07.147 CrossRefGoogle Scholar
  58. 58.
    S.B. Kale, A.C. Lokhande, R.B. Pujari, C.D. Lokhande, Cobalt sulfide thin films for electrocatalytic oxygen evolution reaction and supercapacitor applications. J. Colloid Interface Sci. 532, 491–499 (2018).  https://doi.org/10.1016/j.jcis.2018.08.012 CrossRefGoogle Scholar
  59. 59.
    Y. Chai, Z. Li, J. Wang, Z. Mo, S. Yang, Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors. J. Alloys Compd. 775, 1206–1212 (2019).  https://doi.org/10.1016/j.jallcom.2018.10.259 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • N. C. Maile
    • 1
  • R. T. Patil
    • 1
  • S. K. Shinde
    • 2
  • D. -Y. Kim
    • 2
  • A. V. Fulari
    • 3
  • D. S. Lee
    • 4
  • V. J. Fulari
    • 1
    Email author
  1. 1.Holography and Materials Research Laboratory, Department of PhysicsShivaji UniversityKolhapurIndia
  2. 2.Department of Biological and Environmental ScienceDongguk University-IlsanGoyang-siRepublic of Korea
  3. 3.Department of PhysicsOsmania UniversityHyderabadIndia
  4. 4.Department of Environmental EngineeringKyungpook National UniversityDaeguRepublic of Korea

Personalised recommendations