A homemade self-healing material utilized as multi-functional binder for long-lifespan lithium–sulfur batteries

  • Zhihao Yu
  • Tianji Gao
  • TrungHieu Le
  • Wenxuan Wang
  • Li Wang
  • Ying YangEmail author


This study reports a supramolecular self-healing material as a multi-functional binder for lithium–sulfur batteries. The spontaneously damage repair ability of such a binder can be applied to overcome the short cycle-life issue of lithium–sulfur batteries under low current density with deep galvanostatic cycling. Diamines and polybasic acids are used to synthesize the supramolecular self-healing material. 10 wt% amine groups in this designed material provide a large amount of chemical adsorption sites for polysulfides which can effectively inhibit the shuttling of polysulfides and maintain the content of sulfur species in cathode. This N-rich binder is mixed with the sulfur during preparation, which can improve the effective contacting surface of N function groups and sulfur locally. The cells with pure self-healing material binder achieve an initial capacity of 918 mAh g−1, and maintain a reversible capacity of 469 mAh g−1 after 200 cycles at 0.1C, twice higher than the retention capacity of cells with polyvinylidene fluoride binder. After optimization, the cells with a hybrid binder of self-healing material and polyvinylidene fluoride (weight ratio of 1:1) with a sulfur loading of 2.65 mg cm−2 achieve an initial capacity of 993 mAh g−1, and remain a reversible capacity of 571 mAh g−1 with a capacity fade of 0.2% per cycle after 200 cycles at 0.1C.



This work was supported by the National Natural Science Foundation for Excellent Young Scholars (Grant No. 51722703), National Natural Science Foundation of China (Grant No. 51572147) and Beijing Natural Science Foundation (Grant No. 3162017).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    X. Ji, K.T. Lee, L.F. Nazar, Nat. Mater. 8, 500 (2009)CrossRefGoogle Scholar
  2. 2.
    Y. Yang, G.Y. Zheng, Y. Cui, Chem. Soc. Rev. 42, 3018 (2013)CrossRefGoogle Scholar
  3. 3.
    A. Manthiram, Y. Fu, S.H. Chung, C. Zu, Y.S. Su, Chem. Rev. 114, 11751 (2014)CrossRefGoogle Scholar
  4. 4.
    Q. Pang, X. Liang, C. Kwok, L. Nazar, Nat. Energy 1, 16132 (2016)CrossRefGoogle Scholar
  5. 5.
    Z. Seh, Y. Sun, Q. Zhang, Y. Cui, Chem. Soc. Rev. 45, 5605 (2016)CrossRefGoogle Scholar
  6. 6.
    X. Ji, L.F. Nazar, J. Mater. Chem. 20, 9821 (2010)CrossRefGoogle Scholar
  7. 7.
    H. Wang, Y. Yang, Y. Liang, J.T. Robinson, Y. Li, A. Jackson, Y. Cui, H. Dai, Nano Lett. 11, 2644 (2011)CrossRefGoogle Scholar
  8. 8.
    A. Rosenman, E. Markevich, G. Salitra, D. Aurbach, A. Garsuch, F. Chesneau, Adv. Energy Mater. 5, 150 (2015)CrossRefGoogle Scholar
  9. 9.
    J. Song, M.L. Gordin, T. Xu, S. Chen, Z. Yu, H. Sohn, J. Lu, Y. Ren, Y. Duan, D. Wang, Angew. Chem. Int. Ed. 54, 4325 (2015)CrossRefGoogle Scholar
  10. 10.
    O. Ogoke, G. Wu, X. Wang, A. Casimir, L. Ma, T. Wu, J. Lu, J. Mater. Chem. A. 5, 448 (2017)CrossRefGoogle Scholar
  11. 11.
    X. He, J. Ren, L. Wang, W. Pu, C. Jiang, C. Wan, J. Power Sources 190, 154 (2009)CrossRefGoogle Scholar
  12. 12.
    D. Lin, Y. Liu, Y. Cui, Nat Nanotechnol 12, 194 (2017)CrossRefGoogle Scholar
  13. 13.
    J. Sun, Y. Huang, W. Wang, Z. Yu, A. Wang, K. Yuan, Electrochim. Acta 53, 7084 (2008)CrossRefGoogle Scholar
  14. 14.
    M. Hagen, S. Dörfler, P. Fanz, T. Berger, R. Speck, J. Tübke, H. Althues, M.J. Hoffmann, C. Scherr, S. Kaskel, J. Power Sources 205, 420 (2012)CrossRefGoogle Scholar
  15. 15.
    J.K. Yuan, Z.M. Dang, S.H. Yao, J.W. Zha, T. Zhou, S.T. Li, J. Bai, J. Mater. Chem. 20, 2441 (2010)CrossRefGoogle Scholar
  16. 16.
    F. Liu, N.A. Hashim, Y. Liu, M.R.M. Abed, K. Li, J. Membr. Sci. 37, 1 (2011)CrossRefGoogle Scholar
  17. 17.
    J.G. Bergman Jr., J.H. McFee, G.R. Crane, Appl. Phys. Lett. 18, 203 (1971)CrossRefGoogle Scholar
  18. 18.
    A. Vizintin, R. Guterman, J. Schmidt, M. Antonietti, R. Dominko, Chem. Mater. 30, 5444 (2018)CrossRefGoogle Scholar
  19. 19.
    B. Koo, H. Kim, Y. Cho, K.T. Lee, N. Choi, J. Cho, Angew. Chem. Int. Ed. 124, 8892 (2012)CrossRefGoogle Scholar
  20. 20.
    A. Magasinski, B. Zdyrko, I. Kovalenko, B. Hertzberg, R. Burtovyy, C.F. Huebner, T.F. Fuller, I. Luzinov, G. Yushin, ACS Appl. Mater. Interfaces 2, 3004 (2010)CrossRefGoogle Scholar
  21. 21.
    J.S. Kim, W. Choi, K.Y. Cho, D. Byun, J. Lim, J.K. Lee, J. Power Sources 244, 521 (2013)CrossRefGoogle Scholar
  22. 22.
    J.S. Bridel, T. Azais, M. Morcrette, J.M. Tarascon, D. Larcher, Chem. Mater. 22, 1229 (2010)CrossRefGoogle Scholar
  23. 23.
    J. Pan, G. Xu, B. Ding, J. Han, H. Dou, X. Zhang, RSC Adv. 5, 13709 (2015)CrossRefGoogle Scholar
  24. 24.
    W. Bao, Z. Zhang, Y. Gan, X. Wang, J. Lia, J. Energy Chem. 22, 790 (2013)CrossRefGoogle Scholar
  25. 25.
    X. Hong, J. Jin, Z. Wen, S. Zhang, Q. Wang, C. Shen, K. Rui, J. Power Sources 324, 455–461 (2016)CrossRefGoogle Scholar
  26. 26.
    H. Yuan, J.Q. Huang, H.J. Peng, M.M. Tetirici, R. Xiang, R. Chen, Q. Liu, Q. Zhang, Adv. Energy Mater. 2018, 1802107 (2018)CrossRefGoogle Scholar
  27. 27.
    W. Chen, T. Qian, J. Xiong, N. Xu, X. Liu, J. Liu, J. Zhou, X. Shen, T. Yang, Y. Chen, C. Yan, Adv. Mater. 29, 1605160 (2017)CrossRefGoogle Scholar
  28. 28.
    P. Han, J. Fan, M. Jing, L. Zhu, X. Shen, T. Pan, J. Compos. Mater. 48, 659 (2014)CrossRefGoogle Scholar
  29. 29.
    Y. Fu, C. Zu, A. Manthiram, J. Am. Chem. Soc. 135, 18044 (2013)CrossRefGoogle Scholar
  30. 30.
    H. Su, C. Fu, Y. Zhao, D. Long, L. Ling, B.M. Wong, J. Lu, J. Guo, ACS Energy Lett. 2, 2591 (2017)CrossRefGoogle Scholar
  31. 31.
    R. Demir-Cakan, M. Morcrette, A. Guéguen, R. Dedryvère, J.M. Tarascon, Energy Environ. Sci. 6, 176 (2013)CrossRefGoogle Scholar
  32. 32.
    J. Liao, Z. Ye, Electrochim. Acta 259, 626 (2018)CrossRefGoogle Scholar
  33. 33.
    J.G. Wang, H. Liu, R. Zhou, X. Liu, B. Wei, J. Power Sources 413, 327 (2019)CrossRefGoogle Scholar
  34. 34.
    J.G. Wang, H. Liu, H. Liu, W. Hua, M. Shao, ACS Appl. Mater. Interfaces 10, 18816 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Control and Simulation of Power System and Generation EquipmentsTsinghua UniversityBeijingChina
  2. 2.Institute of Nuclear and New Energy TechnologyTsinghua UniversityBeijingChina

Personalised recommendations