Ag microflake-reinforced nano-Ag paste with high mechanical reliability for high-temperature applications

  • Fan Yang
  • Bo Hu
  • Ye Peng
  • Chunjin HangEmail author
  • Hongtao Chen
  • Changwoo Lee
  • Jun Wei
  • Mingyu LiEmail author


A silver (Ag) composite paste was fabricated based on Ag nanoparticles (NPs) and Ag microflakes (MFs). Robust interconnections were achieved after sintering in the temperature range of 150–225 °C. The shear strengths of the Ag MF + NP joints before and after thermal shock from − 50 to 150 °C for 1000 cycles were 155.7 ± 14.5 MPa and 78.4 ± 20.8 Mpa, respectively. The results show that the Ag composite paste not only has similar sintering properties to the Ag NP pastes but also exhibited superior mechanical reliability due to the addition of the Ag MFs. In addition, the sintered properties of different Ag pastes were discussed in terms of the coating organics, thermal behaviour and microstructure. The fracture modes after the shearing tests were analysed in detail. The Ag composite paste provides a potential solution for high-temperature applications.



We acknowledge financial support from the Shenzhen Science and Technology Plan Project under Grants Nos. JCYJ20160318095308401 and JCYJ20150529152949390 and the Guangzhou Science and Technology Plan Project under Grant No. 201604046029.


  1. 1.
    Y.C. Liu, J.W.R. Teo, S.K. Tung, K.H. Lam, High-temperature creep and hardness of eutectic 80Au/20Sn solder. J. Alloys Compd. 448, 340–343 (2008)CrossRefGoogle Scholar
  2. 2.
    S. Kim, K.S. Kim, S.S. Kim, K. Suganuma, Interfacial reaction and die attach properties of Zn-Sn high-temperature solders. J. Electron. Mater. 38, 266–272 (2009)CrossRefGoogle Scholar
  3. 3.
    H.T. Chen, T.Q. Hu, M.Y. Li, Z.Q. Zhao, Cu@Sn core–Shell structure powder preform for high-temperature applications based on transient liquid phase bonding. IEEE Trans. Power Electron. 32, 441–451 (2016)CrossRefGoogle Scholar
  4. 4.
    A. Sharif, C.L. Gan, Z. Chen, Transient liquid phase Ag-based solder technology for high-temperature packaging applications. J. Alloys Compd. 587, 365–368 (2014)CrossRefGoogle Scholar
  5. 5.
    J. Perelaer, R. Jani, M. Grouchko, A. Kamyshny, S. Magdassi, U.S. Schubert, Plasma and microwave flash sintering of a tailored silver nanoparticle ink, yielding 60% bulk conductivity on cost-effective polymer foils. Adv. Mater. 24, 3993–3998 (2012)CrossRefGoogle Scholar
  6. 6.
    H.J. Ji, S. Wang, M.Y. Li, J. Kim, Deep crystallization induced high thermal conductivity of low-temperature sintered Ag nanoparticles. Mater. Lett. 116, 219–222 (2014)CrossRefGoogle Scholar
  7. 7.
    Y. Bu, S. Lee, Influence of dopamine concentration and surface coverage of Au shell on the optical properties of Au, Ag, and Ag(core)Au(shell) nanoparticles. ACS Appl. Mater. Interfaces. 4, 3923 (2012)CrossRefGoogle Scholar
  8. 8.
    E. Ide, S. Angata, A. Hirose, K.F. Kobayashi, Metal–metal bonding process using Ag metallo-organic nanoparticles. Acta Mater. 53, 2385–2393 (2005)CrossRefGoogle Scholar
  9. 9.
    T. Wang, X. Chen, G.Q. Lu, Low-temperature sintering with nano-silver paste in die-attached interconnection. J. Electron. Mater. 36, 1333–1340 (2007)CrossRefGoogle Scholar
  10. 10.
    H. Ogura, M. Maruyama, R. Matsubayashi, R. Matsubayashi, T. Ogawa, S. Nakamura, T. Komatsu, H. Nagasawa, A. Ichimura, S. Isoda, Carboxylate-passivated silver nanoparticles and their application to sintered interconnection: a replacement for high temperature lead-rich solders. J. Electron. Mater. 39, 1233–1240 (2010)CrossRefGoogle Scholar
  11. 11.
    K.S. Siow, Mechanical properties of nano-silver joints as die attach materials. J. Alloys Compd. 514, 6–19 (2012)CrossRefGoogle Scholar
  12. 12.
    Q. Xu, Y.H. Mei, X. Li, G.Q. Lu, Correlation between interfacial microstructure and bonding strength of sintered nanosilver on ENIG and electroplated Ni/Au direct-bond-copper (DBC) substrates. J. Alloys Compd. 675, 317–324 (2016)CrossRefGoogle Scholar
  13. 13.
    J. Li, C.M. Johnson, C. Buttay, W. Sabbah, S. Azzopardi, Bonding strength of multiple SiC die attachment prepared by sintering of Ag nanoparticles. J. Mater. Proc. Technol. 215, 299–308 (2015)CrossRefGoogle Scholar
  14. 14.
    M.Y. Li, Y. Xiao, Z.H. Zhang, J. Yu, Bimodal sintered silver nanoparticle paste with ultrahigh thermal conductivity and shear strength for high temperature thermal interface material applications. ACS Appl. Mater. Interfaces. 7, 9157–9168 (2015)CrossRefGoogle Scholar
  15. 15.
    J.D. Liu, H.T. Chen, H.J. Ji, M.Y. Li, Highly conductive Cu-Cu joint formation by low-temperature sintering of formic acid-treated Cu nanoparticles. ACS Appl. Mater. Interfaces. 8, 33289 (2016)CrossRefGoogle Scholar
  16. 16.
    H. Zhang, C. Chen, S. Nagao, K. Suganuma, Thermal fatigue behavior of silicon-carbide-doped silver microflake sinter joints for die attachment in silicon/silicon carbide power devices. J. Electron. Mater. 46, 1055–1060 (2017)CrossRefGoogle Scholar
  17. 17.
    S. Sakamoto, T. Sugahara, K. Suganuma, Microstructural stability of Ag sinter joining in thermal cycling. J. Mater. Sci.: Mater. Electron. 24, 1332–1340 (2013)Google Scholar
  18. 18.
    S.C. Hui, K.Y. Cheong, A.B. Ismail, A review on die attach materials for SiC-based high-temperature power devices. Metall. Mater. Trans. B. 41, 824–832 (2010)CrossRefGoogle Scholar
  19. 19.
    H.Y. Li, H.Y. Jing, Y.D. Han, G.Q. Lu, L.Y. Xu, T. Liu, Interface evolution analysis of graded thermoelectric materials joined by low temperature sintering of nano-silver paste. J. Alloys Compd. 659, 95–100 (2016)CrossRefGoogle Scholar
  20. 20.
    S.C. Fu, Y.H. Mei, G.Q. Lu, X. Li, G. Chen, X. Chen, Pressureless sintering of nanosilver paste at low temperature to join large area (≥ 100 mm2) power chips for electronic packaging. Mater. Lett. 128, 42–45 (2014)CrossRefGoogle Scholar
  21. 21.
    J. Li, X. Li, L. Wang, Y.H. Mei, G.Q. Lu, A novel multiscale silver paste for die bonding on bare copper by low-temperature pressure-free sintering in air. Mater. Des. 140, 64–72 (2018)CrossRefGoogle Scholar
  22. 22.
    G. Frens, Carey Lea’s colloidal silver. Kolloid-Zeitschrift und Zeitschrift für Polymere. 233, 922–929 (1969)CrossRefGoogle Scholar
  23. 23.
    S. Wang, M.Y. Li, H.J. Ji, C.Q. Wang, Rapid pressureless low-temperature sintering of Ag nanoparticles for high-power density electronic packaging. Scr. Mater. 69, 789–792 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Tada, J. Bronkema, A.T. Bell, Application of in situ, surface-enhanced Raman spectroscopy (sers) to the study of citrate oxidation on silica-supported silver nanoparticles. Catal. Lett. 92, 93–99 (2004)CrossRefGoogle Scholar
  25. 25.
    C.H. Munro, W.E. Smith, M. Garner, M. Garner, J. Clarkson, P.C. White, Characterization of the surface of a citrate-reduced colloid optimized for use as a substrate for surface-enhanced resonance Raman scattering. Langmuir 11, 3712–3720 (1995)CrossRefGoogle Scholar
  26. 26.
    O. Siiman, L.A. Bumm, R. Callaghan, C.G. Blatchford, M. Kerker, Surface-enhanced Raman scattering by citrate on colloidal silver. J. Phys. Chem. 87, 1014–1023 (1983)CrossRefGoogle Scholar
  27. 27.
    M. Grouchko, A. Kamyshny, C.F. Mihailescu, F.A. Dan, S. Magdassi, Conductive inks with a “built-in” mechanism that enables sintering at room temperature. ACS Nano. 5, 3354–3359 (2011)CrossRefGoogle Scholar
  28. 28.
    K. Nanamoto. Infrared and Raman Spectra of Inorganic and Coordination Compunds. (John Wiley &Sons, Inc, Hoboken, 1986Google Scholar
  29. 29.
    M.A. Asoro, D. Kovar, P.J. Ferreira, Effect of surface carbon coating on sintering of silver nanoparticles: in situ tem observations. Chem. Comm. 50, 4835–4838 (2014)CrossRefGoogle Scholar
  30. 30.
    H. Yu, L. Li, Y. Zhang, Silver nanoparticle-based thermal interface materials with ultra-low thermal resistance for power electronics applications. Scr. Mater. 66, 931–934 (2012)CrossRefGoogle Scholar
  31. 31.
    T.H. Chuang, S.Y. Chang, L.C. Tsao, W.P. Weng, H.M. Wu, Intermetallic compounds formed during the reflow of In-49Sn solder ball-grid array packages. J. Electron. Mater. 32, 195–200 (2003)CrossRefGoogle Scholar
  32. 32.
    M.H. Roh, J.P. Jung, W. Kim, Microstructure, shear strength, and nanoindentation property of electroplated Sn–Bi micro-bumps. Microelectron. Reliab. 54, 265–271 (2014)CrossRefGoogle Scholar
  33. 33.
    Y.H. Mei, J.Y. Lian, X. Chen, G. Chen, X. Li, G.Q. Lu, Thermo-mechanical reliability of double-sided IGBT assembly bonded by sintered nanosilver. IEEE Trans. Device Mater. Reliab. 14, 194–202 (2014)CrossRefGoogle Scholar
  34. 34.
    Y. Xie, Y. Wang, Y.H. Mei, H.N. Xie, K. Zhang, S.T. Feng, K.S. Siow, X. Li, G.Q. Lu, Rapid sintering of nano-Ag paste at low current to bond large area (> 100 mm2) power chips for electronics packaging. J. Mater. Proc. Technol. 255, 644–649 (2018)CrossRefGoogle Scholar
  35. 35.
    S. Sakamoto, S. Nagao, K. Suganuma, Thermal fatigue of Ag flake sintering die-attachment for Si/SiC power devices. J. Mater. Sci.: Mater. Electron. 24, 2593–2601 (2013)Google Scholar
  36. 36.
    J.G. Bai, J.N. Calata, G.Q. Lu, Processing and characterization of nanosilver pastes for die-attaching SiC devices. IEEE Trans. Electron. Packag. Manuf. 30, 241–245 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of Technology at ShenzhenShenzhenChina
  2. 2.State Key Laboratory of Advanced Welding and JoiningHarbin Institute of TechnologyHarbinChina
  3. 3.Korea Institute of Industrial TechnologyIncheonSouth Korea

Personalised recommendations