Sol–gel synthesis, structural and dielectric properties of Y-doped BaTiO3 ceramics

  • Mohamed AfqirEmail author
  • Mohamed Elaatmani
  • Abdelouahad Zegzouti
  • Abdelhamid Oufakir
  • Mohamed Daoud


Prepared nano-polycrystalline of BaTiO3 containing 20, 40, 60 and 80 mol.% Y were prepared by sol–gel method. Consider BaTiO3 perovskite structure where Ba atom is replaced by amounts Y. Careful X-ray diffraction analysis showed the presence of tetragonal phase. The effect of the Y3+ content in BaTiO3 ceramics materials was investigated. The incorporation of yttrium into BaTiO3 unit cell was smoothly alternated the bond vibration of the crystal lattice. By using the Raman-active modes, it was observed that the tetragonal phase is present in all synthesized samples. The morphology of obtaining ceramics is found to be nanosized. Y-doped BaTiO3 ceramics exhibit high values of dielectric constants and low dielectric losses, such properties, combined with the microstructural development arising from the influence of sintering temperature. The fitting derived from the Curie-Wiess laws, confirm that all samples are normal ferroelectric with first order transition accompanied by displacive ones. The increase of conductivity is linked to the formation of oxygen vacancies arise from the dissociation of molecules during the synthesis process.



We would like to acknowledge the Center for Analysis and Characterization, Marrakech, Government of Morocco, for the characterization facility. We appreciate Dr. Hongfei Liu (University of Science and Technology of China) for his help on Raman measurements.


  1. 1.
    T. Kolodiazhnyi, M. Tachibana, H. Kawaji, J. Hwang, Phys. Rev. Lett. 104, 147602 (2010)CrossRefGoogle Scholar
  2. 2.
    Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceramics 7, 25 (2001)CrossRefGoogle Scholar
  3. 3.
    H. Kishi, N. Kohzu, J. Sugino, H. Ohsato, Y. Iguchi, T. Okuda, J. Eur. Ceram. Soc. 19, 1043 (1999)CrossRefGoogle Scholar
  4. 4.
    S.K. Jo, J.S. Park, Y.H. Han, J. Alloys Compd. 501, 259 (2010)CrossRefGoogle Scholar
  5. 5.
    Y. Jung, E. Na, U. Paik, Mater. Res. Bull. 37, 1633 (2002)CrossRefGoogle Scholar
  6. 6.
    M.M.V. Petrović, J.D. Bobić, T. Ramoška, J. Banys, B.D. Stojanović, Mater. Charact. 62, 1000 (2011)CrossRefGoogle Scholar
  7. 7.
    M. Billah, A. Ahmed, M. Rahman, R. Mahbub, AIP Conf. Proc. 1754, 030006 (2016)CrossRefGoogle Scholar
  8. 8.
    Z.C. Li, H. Zhang, X. Zou, B. Bergman, Mater. Sci. Eng. B Solid State Mater. Adv. Technol. 116, 34 (2005)CrossRefGoogle Scholar
  9. 9.
    Q. Sun, Q. Gu, K. Zhu, J. Wang, J. Qiu, Ceram. Int. 42, 3170 (2016)CrossRefGoogle Scholar
  10. 10.
    R.D. Shannon, C.T. Prewitt, Acta Crystallogr. Sect. B Struct. Crystallogr. Cryst. Chem. B25, 925 (1969)CrossRefGoogle Scholar
  11. 11.
    M. Strauss, C.M. Maroneze, J.M. De Souza, E. Silva, F.A. Sigoli, Y. Gushikem, I.O. Mazali, Mater. Chem. Phys. 126, 188 (2011)CrossRefGoogle Scholar
  12. 12.
    R. Ashiri, Vib. Spectrosc. 66, 24 (2013)CrossRefGoogle Scholar
  13. 13.
    J.T. Last, Phys. Rev. 105, 1740 (1957)CrossRefGoogle Scholar
  14. 14.
    A. Garrido-Hernández, A. García-Murillo, F. De, J. Carrillo-Romo, L.A. Cruz-Santiago, G. Chadeyron, A. De, J. Morales-Ramírez, S. Velumani, J. Rare Earths 32, 1016 (2014)CrossRefGoogle Scholar
  15. 15.
    F. Rehman, L. Wang, H.B. Jin, P. Ahmad, Y. Zhao, J.B. Li, J. Alloys Compd. 709, 686e691 (2017)CrossRefGoogle Scholar
  16. 16.
    A.M. Pugachev, I.V. Zaytseva, A.S. Krylov, V.K. Malinovsky, N.V. Surovtsev, Y.M. Borzdov, V.I. Kovalevsky, Ferroelectrics 508, 161 (2017)CrossRefGoogle Scholar
  17. 17.
    L.P. Curecheriu, M. Deluca, Z.V. Mocanu, M.V. Pop, V. Nica, N. Horchidan, M.T. Buscaglia, V. Buscaglia, M. Van Bael, A. Hardy, L. Mitoseriu, Phase Transitions 86, 703 (2013)CrossRefGoogle Scholar
  18. 18.
    H. Hayashi, T. Nakamura, T. Ebina, J. Phys. Chem. Solids 74, 957 (2013)CrossRefGoogle Scholar
  19. 19.
    N.V. Morozovsky, A.V. Semchenko, V.V. Sidsky, V.V. Kolos, A.S. Turtsevich, E. A. Eliseev, A.N. Morozovska, Phys. B Condens. Matter 464, 1 (2015)CrossRefGoogle Scholar
  20. 20.
    I. Norezan, A.K. Yahya, M.K. Talari, J. Mater. Sci. Technol. 28, 1137 (2012)CrossRefGoogle Scholar
  21. 21.
    L. Curecheriu, M.T. Buscaglia, V. Buscaglia, Z. Zhao, L. Mitoseriu, Appl. Phys. Lett. 97, 242909 (2010)CrossRefGoogle Scholar
  22. 22.
    X.G. Tang, J. Wang, X.X. Wang, H.L.W. Chan, Solid State Commun. 131, 163 (2004)CrossRefGoogle Scholar
  23. 23.
    J. Xu, H. Liu, B. He, H. Hao, Y. Li, M. Cao, Z. Yu, Opt. Appl. XL, 255 (2010)Google Scholar
  24. 24.
    M.J. Chrunik, S. Kosowicz, P. Perkowski, M. Mrukiewicz, P. Morawiak, D. Zasada, Acta Phys. Pol. A 124, 1034 (2013)CrossRefGoogle Scholar
  25. 25.
    J.S. Kim, B.C. Choi, H.K. Yang, J.H. Jeong, S.T. Chung, S.-B. Cho, J. Korean Phys. Soc. 52, 415 (2008)CrossRefGoogle Scholar
  26. 26.
    V. Shrivastava, A.K. Jha, R.G. Mendiratta, Phys. B 371, 337 (2006)CrossRefGoogle Scholar
  27. 27.
    R. Martínez, A. Kumar, R. Palai, J.F. Scott, R.S. Katiyar, J. Phys. D Appl. Phys. 44, 105302 (2011)CrossRefGoogle Scholar
  28. 28.
    Y. Tsur, A. Hitomi, I. Scrymgeour, C.A. Randall, Jpn. J. Appl. Phys. 40, 255 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Mohamed Afqir
    • 1
    Email author
  • Mohamed Elaatmani
    • 1
  • Abdelouahad Zegzouti
    • 1
  • Abdelhamid Oufakir
    • 1
  • Mohamed Daoud
    • 1
  1. 1.Laboratoire des Sciences des Matériaux Inorganiques et leurs Applications, Faculté des Sciences SemlaliaUniversité Cadi AyyadMarrakechMorocco

Personalised recommendations