Advertisement

Growth of MoS2 nanosheets on TiO2/g-C3N4 nanocomposites to enhance the visible-light photocatalytic ability

  • Rui-Zhi Zhang
  • Qi-Wen Chen
  • Yu-Xi Lei
  • Jian-Ping ZhouEmail author
Article
  • 12 Downloads

Abstract

TiO2/g-C3N4/MoS2 nanocomposite photocatalysts were synthesized via two-steps in situ solvothermal method. The nanocomposites exhibit an extended visible-light photoresponse, higher efficiency of charge carriers separation, and improved photocatalytic degradation of methylene blue (MB). TiO2/g-C3N4/MoS2 nanoparticles enjoys much higher degradation ratio (95%) under visible light illumination for 30 min than P25 (63%), TiO2/g-C3N4 (45%) and TiO2 (26%). The heterojunctions of TiO2/g-C3N4 and TiO2/MoS2 play a main role in the enhanced photocatalytic performance. The electrons generated in MoS2 and g-C3N4 under visible light migrate to the conduction band of TiO2 to degrade MB dye. The heterojunctions can enhance the separation of photogenerated electron–hole pairs and improve the utilization of photons. This work demonstrates that synergetic effect of g-C3N4 and MoS2, which is a good choice to improve the utilization of visible light of TiO2-based materials.

Notes

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grand No. 51672168) and the Fundamental Research Funds for the Central Universities (Nos. GK201901005, 2017CSY003).

References

  1. 1.
    S.P. Claus, H. Guillou, S. Ellero-Simatos, The gut microbiota: a major player in the toxicity of environmental pollutants? NPJ Biofilms Microbiomes 2, 16003 (2016)CrossRefGoogle Scholar
  2. 2.
    S. Natarajan, H.C. Bajaj, R.J. Tayade, Recent advances based on the synergetic effect of adsorption for removal of dyes from waste water using photocatalytic process. J Environ Sci 65, 201–222 (2018)CrossRefGoogle Scholar
  3. 3.
    A.A. Markus, J.R. Parsons, E.W.M. Roex, P. de Voogt, R.W.P.M. Laane, Modeling aggregation and sedimentation of nanoparticles in the aquatic environment. Sci. Total Environ. 506–507, 323–329 (2015)CrossRefGoogle Scholar
  4. 4.
    S. Baccella, G. Cerichelli, M. Chiarini, C. Ercole, E. Fantauzzi, A. Lepidi, L. Toro, F. Vegliò, Biological treatment of alkaline industrial waste waters. Process. Biochem. 35, 595–602 (2000)CrossRefGoogle Scholar
  5. 5.
    S.G. Ullattil, S.B. Narendranath, S.C. Pillai, P. Periyat, Black TiO2 nanomaterials: a review of recent advances. Chem. Eng. J. 343, 708–736 (2018)CrossRefGoogle Scholar
  6. 6.
    J. Schneider, M. Matsuoka, M. Takeuchi, J. Zhang, Y. Horiuchi, M. Anpo, D.W. Bahnemann, Understanding TiO2 photocatalysis: mechanisms and materials. Chem. Rev. 114, 9919–9986 (2014)CrossRefGoogle Scholar
  7. 7.
    A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972)CrossRefGoogle Scholar
  8. 8.
    Z. Zhao, J. Tian, Y. Sang, A. Cabot, H. Liu, Structure, synthesis, and applications of TiO2 nanobelts. Adv. Mater. 27, 2557–2582 (2015)CrossRefGoogle Scholar
  9. 9.
    K. Wenderich, G. Mul, Methods, mechanism, and applications of photodeposition in photocatalysis: a review. Chem. Rev. 116, 14587–14619 (2016)CrossRefGoogle Scholar
  10. 10.
    H. Bian, N.T. Nguyen, J. Yoo, S. Hejazi, S. Mohajernia, J. Müller, E. Spiecker, H. Tsuchiya, O. Tomanec, B.E. Sanabria-Arenas, R. Zboril, Y.Y. Li, P. Schmuki, Forming a highly active, homogeneously alloyed AuPt co-catalyst decoration on TiO2 nanotubes directly during anodic growth. ACS Appl. Mater. Interfaces 10, 18220–18226 (2018)CrossRefGoogle Scholar
  11. 11.
    Y. Shiraishi, N. Yasumoto, J. Imai, H. Sakamoto, S. Tanaka, S. Ichikawa, B. Ohtani, T. Hirai, Quantum tunneling injection of hot electrons in Au/TiO2 plasmonic photocatalysts. Nanoscale 9, 8349–8361 (2017)CrossRefGoogle Scholar
  12. 12.
    X.-H. Jiang, Q.-J. Xing, X.-B. Luo, F. Li, J.-P. Zou, S.-S. Liu, X. Li, X.-K. Wang, Simultaneous photoreduction of Uranium(VI) and photooxidation of arsenic(III) in aqueous solution over g-C3N4/TiO2 heterostructured catalysts under simulated sunlight irradiation. Appl. Catal. B 228, 29–38 (2018)CrossRefGoogle Scholar
  13. 13.
    L. Kong, C. Wang, H. Zheng, X. Zhang, Y. Liu, Defect-induced yellow color in Nb-doped TiO2 and its impact on visible-light photocatalysis. J. Phys. Chem. C 119, 16623–16632 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, T. Peng, S. Song, Recent advances in dye-sensitized semiconductor systems for photocatalytic hydrogen production. J. Mater. Chem. A 4, 2365–2402 (2016)CrossRefGoogle Scholar
  15. 15.
    N. Sarvari, M.R. Mohammadi, Enhanced electron collection efficiency of nanostructured dye-sensitized solar cells by incorporating TiO2 cubes. J. Am. Ceram. Soc. 101, 293–306 (2018)CrossRefGoogle Scholar
  16. 16.
    Z.-Q. Guo, J.-P. Zhou, L.-L. An, J.-X. Jiang, G.-Q. Zhu, C.-Y. Deng, A new-type of semiconductor Na0.9Mg0.45Ti3.55O8: preparation, characterization and photocatalysis. J. Mater. Chem. A 2, 20358–20366 (2014)CrossRefGoogle Scholar
  17. 17.
    G.F. Samu, Á Veres, B. Endrődi, E. Varga, K. Rajeshwar, C. Janáky, Bandgap-engineered quaternary MxBi2–xTi2O7 (M: Fe, Mn) semiconductor nanoparticles: Solution combustion synthesis, characterization, and photocatalysis. Appl. Catal. B 208, 148–160 (2017)CrossRefGoogle Scholar
  18. 18.
    Z.-Q. Guo, N.-X. Miao, J.-P. Zhou, Y.-X. Lei, Q.U. Hassan, M.-M. Zhou, Novel magnetic semiconductor Na2Fe2Ti6O16: synthesis, double absorption and strong adsorptive ability. J. Mater. Chem. A 5, 17589–17600 (2017)CrossRefGoogle Scholar
  19. 19.
    P. Fernández-Ibáñez, M.I. Polo-López, S. Malato, S. Wadhwa, J.W.J. Hamilton, P.S.M. Dunlop, R. D’Sa, E. Magee, K. O’Shea, D.D. Dionysiou, J.A. Byrne, Solar photocatalytic disinfection of water using titanium dioxide graphene composites. Chem. Eng. J. 261, 36–44 (2015)CrossRefGoogle Scholar
  20. 20.
    X. Niu, W. Yan, H. Zhao, J. Yang, Synthesis of Nb doped TiO2 nanotube/reduced graphene oxide heterostructure photocatalyst with high visible light photocatalytic activity. Appl. Surf. Sci. 440, 804–813 (2018)CrossRefGoogle Scholar
  21. 21.
    L. Shen, Z. Xing, J. Zou, Z. Li, X. Wu, Y. Zhang, Q. Zhu, S. Yang, W. Zhou, Black TiO2 nanobelts/g-C3N4 nanosheets laminated heterojunctions with efficient visible-light-driven photocatalytic performance. Sci. Rep. UK 7, 41978 (2017)CrossRefGoogle Scholar
  22. 22.
    H. Wei, W.A. McMaster, J.Z.Y. Tan, D. Chen, R.A. Caruso, Tricomponent brookite/anatase TiO2/g-C3N4 heterojunction in mesoporous hollow microspheres for enhanced visible-light photocatalysis. J. Mater. Chem. A 6, 7236–7245 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Wei, W.A. McMaster, J.Z.Y. Tan, L. Cao, D. Chen, R.A. Caruso, Mesoporous TiO2/g-C3N4 microspheres with enhanced visible-light photocatalytic activity. J. Phys. Chem. C 121, 22114–22122 (2017)CrossRefGoogle Scholar
  24. 24.
    G. Zhang, T. Zhang, B. Li, S. Jiang, X. Zhang, L. Hai, X. Chen, W. Wu, An ingenious strategy of preparing TiO2/g-C3N4 heterojunction photocatalyst: in situ growth of TiO2 nanocrystals on g-C3N4 nanosheets via impregnation-calcination method. Appl. Surf. Sci. 433, 963–974 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Luan, D. Qu, L. An, W. Jiang, X. Gao, S. Hua, X. Miao, Y. Wen, Z. Sun, Enhancing photocatalytic performance by constructing ultrafine TiO2 nanorods/g-C3N4 nanosheets heterojunction for water treatment. Sci Bull 63, 683–690 (2018)CrossRefGoogle Scholar
  26. 26.
    P. Kumar, U.K. Thakur, K. Alam, P. Kar, R. Kisslinger, S. Zeng, S. Patel, K. Shankar, Arrays of TiO2 nanorods embedded with fluorine doped carbon nitride quantum dots (CNFQDs) for visible light driven water splitting. Carbon 137, 174–187 (2018)CrossRefGoogle Scholar
  27. 27.
    F. Zhao, Y. Rong, J. Wan, Z. Hu, Z. Peng, B. Wang, MoS2 quantum dots@TiO2 nanotube composites with enhanced photoexcited charge separation and high-efficiency visible-light driven photocatalysis. Nanotechnology 29, 105403 (2018)CrossRefGoogle Scholar
  28. 28.
    A. Saha, A. Sinhamahapatra, T.H. Kang, S.C. Ghosh, J.S. Yu, A.B. Panda, Hydrogenated MoS2 QD-TiO2 heterojunction mediated efficient solar hydrogen production. Nanoscale 9, 17029–17036 (2017)CrossRefGoogle Scholar
  29. 29.
    W. Zhang, X. Xiao, Y. Li, X. Zeng, L. Zheng, C. Wan, Liquid-exfoliation of layered MoS2 for enhancing photocatalytic activity of TiO2/g-C3N4 photocatalyst and DFT study. Appl. Surf. Sci. 389, 496–506 (2016)CrossRefGoogle Scholar
  30. 30.
    X. Yang, H. Huang, M. Kubota, Z. He, N. Kobayashi, X. Zhou, B. Jin, J. Luo, Synergetic effect of MoS2 and g-C3N4 as cocatalysts for enhanced photocatalytic H2 production activity of TiO2. Mater. Res. Bull. 76, 79–84 (2016)CrossRefGoogle Scholar
  31. 31.
    Z. Zhao, Y. Sun, F. Dong, Graphitic carbon nitride based nanocomposites: a review. Nanoscale 7, 15–37 (2015)CrossRefGoogle Scholar
  32. 32.
    F. Ding, D. Yang, Z. Tong, Y. Nan, Y. Wang, X. Zou, Z. Jiang, Graphitic carbon nitride-based nanocomposites as visible-light driven photocatalysts for environmental purification. Environ. Sci. 4, 1455–1469 (2017)Google Scholar
  33. 33.
    W.-J. Ong, L.-L. Tan, Y.H. Ng, S.-T. Yong, S.-P. Chai, Graphitic carbon nitride (g-C3N4)-based photocatalysts for artificial photosynthesis and environmental remediation: are we a step closer to achieving sustainability? Chem. Rev. 116, 7159–7329 (2016)CrossRefGoogle Scholar
  34. 34.
    P. Xia, B. Zhu, J. Yu, S. Cao, M. Jaroniec, Ultra-thin nanosheet assemblies of graphitic carbon nitride for enhanced photocatalytic CO2 reduction. J. Mater. Chem. A 5, 3230–3238 (2017)CrossRefGoogle Scholar
  35. 35.
    C. Miranda, H. Mansilla, J. Yáñez, S. Obregón, G. Colón, Improved photocatalytic activity of g-C3N4/TiO2 composites prepared by a simple impregnation method. J. Photochem. Photobiol. A 253, 16–21 (2013)CrossRefGoogle Scholar
  36. 36.
    Z. Xu, C. Zhuang, Z. Zou, J. Wang, X. Xu, T. Peng, Enhanced photocatalytic activity by the construction of a TiO2/carbon nitride nanosheets heterostructure with high surface area via direct interfacial assembly. Nano Res. 10, 2193–2209 (2017)CrossRefGoogle Scholar
  37. 37.
    K. Li, B. Peng, J. Jin, L. Zan, T. Peng, Carbon nitride nanodots decorated brookite TiO2 quasi nanocubes for enhanced activity and selectivity of visible-light-driven CO2 reduction. Appl. Catal. B 203, 910–916 (2017)CrossRefGoogle Scholar
  38. 38.
    P. Minhoon, P.Y. Ju, C. Xiang, P. Yon-Kyu, K. Min-Seok, A. Jong-Hyun, MoS2-based tactile sensor for electronic skin applications. Adv. Mater. 28, 2556–2562 (2016)CrossRefGoogle Scholar
  39. 39.
    Y.T. Lee, W.K. Choi, D.K. Hwang, Chemical free device fabrication of two dimensional van der Waals materials based transistors by using one-off stamping. Appl. Phys. Lett. 108, 253105 (2016)CrossRefGoogle Scholar
  40. 40.
    E. Parzinger, B. Miller, B. Blaschke, J.A. Garrido, J.W. Ager, A. Holleitner, U. Wurstbauer, Photocatalytic stability of single- and few-layer MoS2. ACS Nano 9, 11302–11309 (2015)CrossRefGoogle Scholar
  41. 41.
    H.S. Lee, S.-W. Min, Y.-G. Chang, M.K. Park, T. Nam, H. Kim, J.H. Kim, S. Ryu, S. Im, MoS2 nanosheet phototransistors with thickness-modulated optical energy gap. Nano Lett. 12, 3695–3700 (2012)CrossRefGoogle Scholar
  42. 42.
    K.F. Mak, C. Lee, J. Hone, J. Shan, T.F. Heinz, Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105, 136805 (2010)CrossRefGoogle Scholar
  43. 43.
    E.S. Kadantsev, P. Hawrylak, Electronic structure of a single MoS2 monolayer. Solid State Commun. 152, 909–913 (2012)CrossRefGoogle Scholar
  44. 44.
    H. He, J. Lin, W. Fu, X. Wang, H. Wang, Q. Zeng, Q. Gu, Y. Li, C. Yan, B.K. Tay, C. Xue, X. Hu, S.T. Pantelides, W. Zhou, Z. Liu, MoS2/TiO2 Edge-On Heterostructure for Efficient Photocatalytic Hydrogen Evolution. Adv Energy Mater. 6, 1600464 (2016)CrossRefGoogle Scholar
  45. 45.
    Y.-J. Yuan, Z.-J. Ye, H.-W. Lu, B. Hu, Y.-H. Li, D.-Q. Chen, J.-S. Zhong, Z.-T. Yu, Z.-G. Zou, Constructing Anatase TiO2 Nanosheets with Exposed (001) Facets/Layered MoS2 Two-Dimensional Nanojunctions for Enhanced Solar Hydrogen Generation. ACS Catal. 6, 532–541 (2016)CrossRefGoogle Scholar
  46. 46.
    B. Xue, H.-Y. Jiang, T. Sun, F. Mao, J.-K. Wu, One-step synthesis of MoS2/g-C3N4 nanocomposites with highly enhanced photocatalytic activity. Mater. Lett. 228, 475–478 (2018)CrossRefGoogle Scholar
  47. 47.
    Y.-X. Lei, J.-P. Zhou, Q.U. Hassan, J.-Z. Wang, One-step synthesis of NiTe2 nanorods coated with few-layers MoS2 for enhancing photocatalytic activity. Nanotechnology 28, 495602 (2017)CrossRefGoogle Scholar
  48. 48.
    Y.-X. Lei, J.-Z. Wang, J.-P. Zhou, Z.-Q. Guo, Q.U. Hassan, Fabrication and enhanced photocatalytic properties of novel 3D MoS2/Na0.9Mg0.45Ti3.55O8 heterostructures. Appl. Surf. Sci. 427, 733–741 (2018)CrossRefGoogle Scholar
  49. 49.
    M. Xu, L. Han, S. Dong, Facile Fabrication of Highly Efficient g-C3N4/Ag2O Heterostructured Photocatalysts with Enhanced Visible-Light Photocatalytic Activity. ACS Appl. Mater. Interfaces 5, 12533–12540 (2013)CrossRefGoogle Scholar
  50. 50.
    Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Biomimetic fabrication of g-C3N4/TiO2 nanosheets with enhanced photocatalytic activity toward organic pollutant degradation. Chem. Eng. J. 260, 117–125 (2015)CrossRefGoogle Scholar
  51. 51.
    K.K. Paul, N. Sreekanth, R.K. Biroju, T.N. Narayanan, P.K. Giri, Solar light driven photoelectrocatalytic hydrogen evolution and dye degradation by metal-free few-layer MoS2 nanoflower/TiO2(B) nanobelts heterostructure. Sol. Energ. Mater. Sol. Cells 185, 364–374 (2018)CrossRefGoogle Scholar
  52. 52.
    M. Hu, Z. Xing, Y. Cao, Z. Li, X. Yan, Z. Xiu, T. Zhao, S. Yang, W. Zhou, Ti3+ self-doped mesoporous black TiO2/SiO2/g-C3N4 sheets heterojunctions as remarkable visible-lightdriven photocatalysts. Appl. Catal. B 226, 499–508 (2018)CrossRefGoogle Scholar
  53. 53.
    T. Saison, N. Chemin, C. Chanéac, O. Durupthy, V. Ruaux, L. Mariey, F. Maugé, P. Beaunier, J.-P. Jolivet, Bi2O3, BiVO4, and Bi2WO6: impact of surface properties on photocatalytic activity under visible light. J. Phys. Chem. C 115, 5657–5666 (2011)CrossRefGoogle Scholar
  54. 54.
    J.M. Buriak, P.V. Kamat, K.S. Schanze, Best practices for reporting on heterogeneous photocatalysis. ACS Appl. Mater. Interfaces 6, 11815–11816 (2014)CrossRefGoogle Scholar
  55. 55.
    L. Ge, C. Han, X. Xiao, L. Guo, Synthesis and characterization of composite visible light active photocatalysts MoS2–g-C3N4 with enhanced hydrogen evolution activity. Int. J. Hydrog. Energy 38, 6960–6969 (2013)CrossRefGoogle Scholar
  56. 56.
    W. Zhang, X. Xiao, Y. Li, X. Zeng, L. Zheng, C. Wan, Liquid exfoliation of layered metal sulphide for enhanced photocatalytic activity of TiO2 nanoclusters and DFT study. RSC Adv. 6, 33705–33712 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Physics and Information TechnologyShaanxi Normal UniversityXi’anPeople’s Republic of China

Personalised recommendations