Physical and photo-electrochemical properties of MgFe2O4 prepared by sol gel route: application to the photodegradation of methylene blue

  • Z. Hammache
  • A. Soukeur
  • S. OmeiriEmail author
  • B. Bellal
  • M. Trari


The spinel MgFe2O4 synthesized by sol gel method, was characterized by physical and electrochemical methods. The thermal analysis (TG) gives an optimal synthesis temperature of 650 °C where the X-ray diffraction pattern exhibits a single phase crystallizing in a cubic symmetry (Space Group: Fd\(\stackrel{-}{3}\)m) with spherical crystallites (~ 0.45 µm). The morphology observed through the SEM image shows elliptical and spherical grains of ~ 0.8 µm. The spinel possesses a direct optical transition (2.16 eV) due to electrons transfer Fe3+: d−d transition, coming from the crystal field splitting in agreement with the red color. The low electrons mobility is assigned to a narrow conduction band of Fe3+: 3d parentage with activation energy (0.14 eV) in conformity with a conduction mechanism by small polaron hopping. The semi-logarithmic plot confirms the chemical stability of oxide. Unlike other spinels, the capacitance plot exhibits n type conduction confirmed by chrono-amperometry with a flat band potential (Efb) of 0.27 V. The electrochemical impedance spectroscopy displays a semi-circle attributed to the bulk behavior. As application, the photodegradation of methylene blue (10 mg L− 1) was successfully on the spinel suspension; 87% are eliminated after 2 h of exposure to sunlight irradiation.



The authors would like to thank Dr R. Brahimi and F. Saib for their assistances and helpful discussions in the electrochemical measurements. They are also grateful to Pr Y. Boucheffa for the BET measurement.


  1. 1.
    N. Sivakumar, S.R.P. Gnanakan, K. Karthikeyan, S. Amaresh, W.S. Yoon, G.J. Park, Y.S. Lee, J. alloys compd. 509, 7038–7041 (2011)CrossRefGoogle Scholar
  2. 2.
    S. Sumathi, V. Lakshmipriya, J. Mater. Sci. Mater. Electron. 28, 2795–2802 (2017)CrossRefGoogle Scholar
  3. 3.
    R.H. Akbarnejad, V. Daadmehr, A.T. Rezakhani, F.S. Tehrani, F. Aghakhani, S. Gholipour, J. Mater. Electron. 26, 429–435 (2013)Google Scholar
  4. 4.
    S.P. Dalawai, T.J. Shinde, A.B. Gadkari, P.N. Vasambekar, J. Sol. State Electr. 20, 2363–2372 (2016)CrossRefGoogle Scholar
  5. 5.
    A.M. Gismelseed, K.A. Mohammed, M.E. Elzain, H.M. Widatallah, A.D. Al-Rawas, A.A. Yousif, Hyperfine Interact 208, 33–37 (2012)CrossRefGoogle Scholar
  6. 6.
    V. Srivastava, Y.C. Sharma, M. Sillanpää, Appl. Surf. Sci. 338, 42–54 (2015)CrossRefGoogle Scholar
  7. 7.
    M. Sundararajan, L.J. Kennedy, P. Nithya, J.J. Vijaya, M. Bououdina, J. Phys. Chem. Solids. 108, 61–75 (2017)CrossRefGoogle Scholar
  8. 8.
    S. Muhammad, J. Liu, A. Zahid, S. Imran, M.F. Warsi, P. Riffat, N. Muhammad, Mater. Chem. Phys. 139, 566–571 (2013)CrossRefGoogle Scholar
  9. 9.
    A. Arimi, L. Megatif, L.I. Granone, R. Dillert, D.W. Bahnemann, J. Photochem. Photobiol. A 366, 118–126 (2018)CrossRefGoogle Scholar
  10. 10.
    S. Warfsmann, D. HailuTaffa, M. Wark, J. Photochem. Photobiol. A 362, 49–57 (2018)CrossRefGoogle Scholar
  11. 11.
    N.J. Gao, S. Yang, L. Li, F. Meng, H. Wang, C. He, M. Sun, Appl. Surf. Sci. 379, 140–149 (2016)CrossRefGoogle Scholar
  12. 12.
    R. Sheng Ye, M.-Z. Wang, Y.-P. Wu, Yuan, Appl. Surf. Sci. 358, 15–27 (2015)CrossRefGoogle Scholar
  13. 13.
    L. Avazpour, M.R. Toroghinejad, H. Shokrollahi, Appl. Surf. Sci. 387, 869–874 (2016)CrossRefGoogle Scholar
  14. 14.
    M. Oujja, L. Martín-García, E. Rebollar, A. Quesada, M.A. García, J.F. Fernández, J.F. Marco, J. de la Figuera, M. Castillejo, Appl. Surf. Sci. 452, 19–31 (2018)CrossRefGoogle Scholar
  15. 15.
    G. Dascalu, G. Pompilian, B. Chazallon, O.F. Caltun, S. Gurlui, C. Focsa, Appl. Surf. Sci. 278, 38–42 (2013)CrossRefGoogle Scholar
  16. 16.
    A. Eslam, F. Saeed, Z. Abedin, Sol. Energy Mater. Sol. Cells 178, 154–163 (2018)CrossRefGoogle Scholar
  17. 17.
    J.W. Park, M.A. Mahadika, G.W. An, S.Y. Lee, G. Piao, S.H. Choi, W.-S. Chae, H.-S. Chung, H. Park, J.S. Jang, Sol. Energy Mater. Sol. Cells 187, 207–218 (2018)CrossRefGoogle Scholar
  18. 18.
    C. Wang, H. Fan, X. Ren, J. Fang, J. Ma, N. Zhao, Mater. Charact. 139, 89–99 (2018)CrossRefGoogle Scholar
  19. 19.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M.R. Ganjali, P. Norouzi, F. Faridbod, M.S. Karimi, J. Mater. Sci. Mater. Electron. 27, 12860–12868 (2016)CrossRefGoogle Scholar
  20. 20.
    M. Rahimi-Nasrabadi, S.M. Pourmortazavi, M. Aghazadeh, M.R. Ganjali, M.S. Karimi, P. Novrouzi, J. Mater. Sci. 28, 3780–3788 (2017)Google Scholar
  21. 21.
    R.K. Kotnala, J. Shah, M.C. Mathpal, K.C. Verma, S. Sing, Lovkush, Thin Solid Films. 519, 6135–6139 (2011)Google Scholar
  22. 22.
    K. Hyun Gyu, B. Pramod, J. Jum Suk, J.Euh Duck, J. Ok-Sang, S.Y. Jae, L.J. Sung. Chem. Commun. 21, 5889–5891 (2009)Google Scholar
  23. 23.
    J. Tauc, R. Grigorovici, A. Vancu, Phys. Stat. Sol. 15, 627–637 (1966)CrossRefGoogle Scholar
  24. 24.
    T. Dayakar, K.V. Rao, C.S Chakra, Int. J. Nano Sci. Technol. 1, 01–08 (2013)CrossRefGoogle Scholar
  25. 25.
    L.G.J. De Haart, G. Blasse, Solid State Ionics 132, 137–139 (1985)Google Scholar
  26. 26.
    M. Nowak, B. Kauch, P. Szperlich, Rev. Sci. Instrum. 80, 0461071–0461073 (2009)CrossRefGoogle Scholar
  27. 27.
    T.P. McLean, in Progress in Semiconductors, ed. by A.F. Gibson (Wiley, Heywood, 1960)Google Scholar
  28. 28.
    G. Rekhila, Y. Bessekhouad, M. Trari, Int. J. Hydrogen Energy. 38, 6335–6343 (2013)CrossRefGoogle Scholar
  29. 29.
    H. Gerischer, Pure Appl. Chem. 52, 2649–2667 (1980)CrossRefGoogle Scholar
  30. 30.
    S. Omeiri, B. Hadjarab, M. Trari, Films Thin Solid Films 519, 4277–4281 (2011)CrossRefGoogle Scholar
  31. 31.
    M. Kaneko, I. Okura, Photo catalysis science and technology, 1st edn. (Springer, Japan, 2003)Google Scholar
  32. 32.
    R. Talebi, J. Mater. Sci. 28, 9749–9754 (2017)Google Scholar
  33. 33.
    F. Ahmadi, M. Rahimi-Nasrabadi, M. Behpour, J. Mater. Sci. 28, 1531–1536 (2017)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Z. Hammache
    • 1
  • A. Soukeur
    • 1
  • S. Omeiri
    • 2
    Email author
  • B. Bellal
    • 2
  • M. Trari
    • 2
  1. 1.Laboratory of Hydrometallurgy and Molecular Inorganic Chemistry, Faculty of ChemistryUSTHBAlgiersAlgeria
  2. 2.Laboratory of Storage and Valorization of Renewable Energies, Faculty of ChemistryUSTHBAlgiersAlgeria

Personalised recommendations