Dependence of shear strength of Sn–3.8Ag–0.7Cu/Co–P solder joints on the P content of Co–P metallization

  • Shuang Liu
  • Bingkun Hu
  • Yang Hu
  • Qian Wang
  • Liangliang LiEmail author


The mechanical properties of solder joints highly depend on the interfacial reaction between the solders and the metallization on substrates. In this work, we electroplated Co–P films with various compositions on the Cu pads of printed circuit boards and fabricated Sn-3.8 wt% Ag-0.7 wt% Cu/Co–P ball grid array (BGA) solder joints. The BGA solder joints were annealed at 150 °C for 100, 200, 500, and 1000 h and the shear strength of these joints was measured. When the P content of the Co–P metallization was increased from 2.3 to 18.8 at.%, the shear strength after 1000 h annealing initially rose to 107.9 MPa at a P content of 8.5 at.%, then decreased to 84.3 MPa at a P content of 12.5 at.%, and again increased to 96.0 MPa at a P content of 18.8 at.%. The enhancement of the shear strength of the joints with Co-8.5 at.% P, Co-12.5 at.% P, and Co-18.8 at.% P films was 109.5%, 63.7%, and 86.4% in comparison to the joints without Co–P metallization, respectively. The interfacial reaction between the Sn–Ag–Cu (SAC) solder and Co–P films during annealing and the fractured surfaces of the solder joints after the shear test were studied. For the joints with Co-8.5 at.% P and Co-18.8 at.% P films, a thick layer of CoSn3 was formed at the interfaces during annealing, which enhanced the shear strength. For the joints with Co-12.5 at.% P metallization, a thin layer of Co–Sn–P was formed at the interfaces and was peeled off layer by layer with prolongation of the annealing time. The spalled Co–Sn–P was mixed with the solder matrix, increasing the shear strength of the solder joints. The shear strength of the SAC/Co-12.5 at.% P joints was less than that of the joints with Co-8.5 at.% P and Co-18.8 at.% P films because no CoSn3 formed. Therefore, the composition of Co–P metallization played an important role in the interfacial reaction of the SAC/Co–P solder joints, which in turn affected the shear strength of the solder joints. Our experimental results show that the electroplated Co–P film is a promising candidate as the metallization for BGA solder joints.



This work was supported by the National Natural Science Foundation of China (Grant No. 51572149), National Key Research and Development Program of China (Grant No. 2016YFA0201003), and National Basic Research Program of China (Grant No. 2013CB632504). We thank Dr. Donghua Yang at Chongqing University of Technology for his help on the preparation of SEM samples and Prof. Yunhan Ling at Tsinghua University for his help on the multi-pulse electroplating.


  1. 1.
    J. Wu, S.B. Xue, J.W. Wang, S. Liu, Y.L. Han, L.J. Wang, J. Mater. Sci.: Mater. Electron. 27, 12729 (2016)Google Scholar
  2. 2.
    D.A.A. Shnawah, S.B.M. Said, M.F.M. Sabri, I.A. Badruddin, F.X. Che, Microelectron. Reliab. 52, 2701 (2012)CrossRefGoogle Scholar
  3. 3.
    K. Choi, D.Y. Yu, S. Ahn, K.H. Kim, J.H. Bang, Y.H. Ko, Microelectron. Reliab. 86, 66 (2018)CrossRefGoogle Scholar
  4. 4.
    A.S.M.A. Haseeb, M.M. Arafat, S.L. Tay, Y.M. Leong, J. Electron. Mater. 46, 5503 (2017)CrossRefGoogle Scholar
  5. 5.
    L. Zhang, J.G. Han, C.W. He, Y.H. Guo, J. Mater. Sci.: Mater. Electron. 24, 172 (2013)Google Scholar
  6. 6.
    T. Laurila, V. Vuorinen, J.K. Kivilahti, Mater. Sci. Eng. R 49, 1 (2005)CrossRefGoogle Scholar
  7. 7.
    Y.H. Hsiao, K.L. Lin, J. Mater. Sci.: Mater. Electron. 27, 2201 (2016)Google Scholar
  8. 8.
    J.H. Seo, S.W. Yoon, K.H. Kim, H.J. Chang, K.B. Lee, T.Y. Seong, E. Fleury, J.P. Ahn, Microsc. Microanal. 19, 49 (2013)CrossRefGoogle Scholar
  9. 9.
    Y. Yang, J.N. Balaraju, Y. Huang, Y.Y. Tay, Y. Shen, Z. Tsakadze, Z. Chen, J. Electron. Mater. 43, 4103 (2014)CrossRefGoogle Scholar
  10. 10.
    K.J. Wang, J.G. Duh, J. Electron. Mater. 41, 757 (2012)CrossRefGoogle Scholar
  11. 11.
    C.L. Liang, K.L. Lin, P.J. Cheng, J. Mater. Sci.: Mater. Electron. 29, 15233 (2018)Google Scholar
  12. 12.
    F.C. Tai, K.J. Wang, J.G. Duh, Scripta Mater. 61, 748 (2009)CrossRefGoogle Scholar
  13. 13.
    R. Novakovic, T. Lanata, S. Delsante, G. Borzone, Mater. Chem. Phys. 137, 458 (2012)CrossRefGoogle Scholar
  14. 14.
    H.C. Pan, T.E. Hsieh, Mater. Sci. Eng. B 177, 61 (2012)CrossRefGoogle Scholar
  15. 15.
    J.W. Yoon, J.H. Back, S.B. Jung, J. Mater. Sci.: Mater. Electron. 29, 4724 (2018)Google Scholar
  16. 16.
    B.S. Lee, Y.H. Ko, J.H. Bang, C.W. Lee, S. Yoo, J.K. Kim, J.W. Yoon, Microelectron. Reliab. 71, 119 (2017)CrossRefGoogle Scholar
  17. 17.
    G. Yang, D. Yang, L. Li, Microelectron. Reliab. 55, 2403 (2015)CrossRefGoogle Scholar
  18. 18.
    S. Li, D. Yang, Q. Tan, L. Li, J. Electron. Mater. 44, 2007 (2015)CrossRefGoogle Scholar
  19. 19.
    P. Ratchev, B. Vandevelde, I.D. Wolf, IEEE Trans. Device Mater. Reliab. 4, 5 (2004)CrossRefGoogle Scholar
  20. 20.
    Y.G. Kong, Z.G. Kong, F.M. Shi, Rare Met. 36, 193 (2017)CrossRefGoogle Scholar
  21. 21.
    S. Tan, J. Han, F. Guo, J. Electron. Mater. 47, 4156 (2018)CrossRefGoogle Scholar
  22. 22.
    L.Y. Gao, H. Zhang, C.F. Li, J. Guo, Z.Q. Liu, J. Mater. Sci. Technol. 34, 1305 (2018)CrossRefGoogle Scholar
  23. 23.
    H. Zhou, J. Guo, Q. Zhu, J. Shang, J. Mater. Sci. Technol. 29, 7 (2013)CrossRefGoogle Scholar
  24. 24.
    T.J. Kim, Y.M. Kim, Y.H. Kim, J. Alloys Compd. 535, 33 (2012)CrossRefGoogle Scholar
  25. 25.
    P.Y. Chia, A.S.M.A. Haseeb, J. Mater. Sci.: Mater. Electron. 24, 3423 (2013)Google Scholar
  26. 26.
    S.H. Wu, Y.J. Hu, C.T. Lu, T.S. Huang, Y.H. Chang, C.Y. Liu, J. Electron. Mater. 41, 3342 (2012)CrossRefGoogle Scholar
  27. 27.
    C.F. Tseng, T.Y. Lee, G. Ramakrishna, K.C. Liu, J.G. Duh, Mater. Lett. 65, 3216 (2011)CrossRefGoogle Scholar
  28. 28.
    C.P. Lin, C.M. Chen, Microelectron. Reliab. 52, 385 (2012)CrossRefGoogle Scholar
  29. 29.
    G. Humpston, J. Mater. Sci. Mater. Electron. 21, 584 (2010)CrossRefGoogle Scholar
  30. 30.
    R. Labie, P. Ratchev, E. Beyne, In: Proceeding of 55th Electronic Components and Technology Conference (ECTC 2005), p. 449 (2005)Google Scholar
  31. 31.
    N. Lu, D. Yang, L. Li, Acta Mater. 61, 4581 (2013)CrossRefGoogle Scholar
  32. 32.
    C.H. Wang, S.E. Huang, C.W. Chiu, J. Alloys Compd. 619, 474 (2015)CrossRefGoogle Scholar
  33. 33.
    C.H. Wang, C.C. Wen, C.Y. Lin, J. Alloys Compd. 662, 475 (2016)CrossRefGoogle Scholar
  34. 34.
    L. Magagnin, V. Sirtori, S. Seregni, A. Origo, P.L. Cavallotti, Electrochim. Acta 50, 4621 (2005)CrossRefGoogle Scholar
  35. 35.
    W.C. Wu, T.E. Hsieh, H.C. Pan, J. Electrochem. Soc. 155, D369 (2008)CrossRefGoogle Scholar
  36. 36.
    H.C. Pan, T.E. Hsieh, J. Electrochem. Soc. 158, P123 (2011)CrossRefGoogle Scholar
  37. 37.
    H. Chen, Y.L. Tsai, Y.T. Chang, A.T. Wu, J. Alloys Compd. 671, 100 (2016)CrossRefGoogle Scholar
  38. 38.
    D. Yang, J. Cai, Q. Wang, J.W. Li, Y. Hu, L. Li, In Proceeding of 6th Electronic System-Integration Technology Conference (ESTC 2016., p. 1, (2016)
  39. 39.
    D. Yang, J. Cai, Q. Wang, J. Li, Y. Hu, L. Li, J. Mater. Sci.: Mater. Electron. 26, 962 (2015)Google Scholar
  40. 40.
    N. Lu, J. Cai, L. Li, Surf. Coat. Technol. 206, 4822 (2012)CrossRefGoogle Scholar
  41. 41.
    W.S. Rasband, ImageJ. U. S. National Institutes of Health, Bethesda, Maryland, USA. Accessed 16 Apr 2018
  42. 42.
    J.H. Hong, H.Y. Lee, A.T. Wu, J. Alloys Compd. 580, 195 (2013)CrossRefGoogle Scholar
  43. 43.
    S.K. Lin, K.D. Chen, H. Chen, W.K. Liou, Y.W. Yen, J. Mater. Res. 25, 2278 (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Shuang Liu
    • 1
  • Bingkun Hu
    • 1
  • Yang Hu
    • 2
  • Qian Wang
    • 2
  • Liangliang Li
    • 1
    Email author
  1. 1.Key Laboratory of Advanced Materials (MOE), School of Materials Science and EngineeringTsinghua UniversityBeijingChina
  2. 2.Institute of MicroelectronicsTsinghua UniversityBeijingChina

Personalised recommendations