Impact of crystal structure and defect on the electric properties in (LiCeY)-doped CaBi2Nb2O9-based high-temperature piezoceramics

  • Jing Yuan
  • Rui Nie
  • Wan Li
  • Jianguo ZhuEmail author


The Ca1–2x(LiCe0.5Y0.5)xBi2Nb2O9 (CBNLCY-100x, x = 0–0.07) high-temperature ceramics were prepared by the conventional solid state reaction. The LiCeY substitution at A-site led an improvement of octahedral tilt angle in the ac plane of CBNLCY-100x ceramics, which resulted in an enhanced piezoelectric constant. CBNLCY-6 ceramic with high Curie temperature (TC = 940 °C) had a high piezoelectric coefficient (d33) of 16.3 pC/N, even after annealing at 800 °C for 2 h, the d33 value of CBNLCY-6 ceramic still remained 92.6% of its original value. Furthermore, the dc conduction mechanism of the ceramics was studied. The oxygen vacancies played an important role in dc conduction mechanism at low temperature and the main conduction mechanism at high temperature was intrinsic conduction. The resistivity of CBNLCY-100x ceramics got highest value at x = 0.01 and the resistivity of CBNLCY-1 ceramic enhanced one order of magnitude compared with undoped CaBi2Nb2O9 ceramic. These results suggest that the CBNLCY-6 ceramic is a promising candidate material for ultra-high temperature applications.



This work was supported by the Key Program of National Natural Science Foundation of China (No. 51332003) and Sichuan Science and Technology Program (2018G20140).


  1. 1.
    S.M. Blake, M.J. Falconer, M. Mccreedy, P. Lightfoot, J. Mater. Chem. 7, 1609 (1997)CrossRefGoogle Scholar
  2. 2.
    H. Chen, B. Shen, J. Xu, L. Kong, J. Zhai, J. Am. Ceram. Soc. 95, 3514 (2012)CrossRefGoogle Scholar
  3. 3.
    C.M. Wang, S. Zhang, J.F. Wang, M.L. Zhao, C.L. Wang, Mater. Chem. Phys. 118, 21 (2009)CrossRefGoogle Scholar
  4. 4.
    E.C. Subbarao, J. Phys. Chem. Solids 23, 665 (1962)CrossRefGoogle Scholar
  5. 5.
    E.C. Subbarao, J. Am. Ceram. Soc. 45, 166 (1962)CrossRefGoogle Scholar
  6. 6.
    X. Zhang, H. Yan, M.J. Reece, J. Am. Ceram. Soc. 91, 2928 (2008)CrossRefGoogle Scholar
  7. 7.
    X.X. Tian, S.B. Qu, H.L. Du, Y. Li, Z. Xu, Chin. Phys. B 21, 037701 (2012)CrossRefGoogle Scholar
  8. 8.
    Z. Peng, Q. Chen, Y. Wang, D. Xin, D. Xian, J. Zhu, Mater. Lett. 107, 14 (2013)CrossRefGoogle Scholar
  9. 9.
    C.M. Wang, J.F. Wang, S. Zhang, T.R. Shrout, Phys. Status Solidi RRL 3, 49 (2009)CrossRefGoogle Scholar
  10. 10.
    Y. Wang, J. Wu, Z. Peng, Q. Chen, D. Xin, D. Xiao, J. Zhu, Appl. Phys. A 119, 337 (2015)CrossRefGoogle Scholar
  11. 11.
    J. Xie, J. Zhong, C. Wu, Y. Shi, D. Wang, G. Liu, D. Liang, B. Wang, J. Zhu, Q. Chen, J. Am. Ceram. Soc. 00, 1 (2018)Google Scholar
  12. 12.
    C. Long, H. Fan, M. Li, P. Ren, Y. Cai, Cryst. Eng. Commun. 15, 10212 (2013)CrossRefGoogle Scholar
  13. 13.
    G. Liu, J. Yuan, R. Nie, L. Jiang, Z. Tan, J. Zhu, Q. Chen, J. Alloy. Compd. 697, 380 (2016)CrossRefGoogle Scholar
  14. 14.
    Y. Chen, S. Xie, H. Wang, Q. Chen, Q. Wang, J. Zhu, Z. Guan, J. Alloy. Compd. 696, 746 (2017)CrossRefGoogle Scholar
  15. 15.
    C. Long, H. Fan, M. Li, Appl. Phys. Lett. 103, 192908 (2013)CrossRefGoogle Scholar
  16. 16.
    S.M. Ke, H.T. Huang, H.Q. Fan, H.K. Lee, L.M. Zhou, Y.W. Mai, Appl. Phys. Lett. 101, 082901 (2012)CrossRefGoogle Scholar
  17. 17.
    T. Li, H. Fan, C. Long, G. Dong, S. Sun, J. Alloy. Compd. 609, 60 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Guo, H. Fan, C. Long, J. Shi, L. Yang, S. Lei, J. Alloy. Compd. 610, 189 (2014)CrossRefGoogle Scholar
  19. 19.
    H. Chen, J. Zhai, J. Electron. Mater. 41, 2238 (2012)CrossRefGoogle Scholar
  20. 20.
    J. Liu, Z. Shen, M. Nygren, Y. Kan, P. Wang, J. Eur. Ceram. Soc. 26, 3233 (2006)CrossRefGoogle Scholar
  21. 21.
    C. Long, H. Fan, M. Li, Dalton Trans. 42, 3561 (2013)CrossRefGoogle Scholar
  22. 22.
    R.D. Shannon, Acta Crystallogr. Sect. A Found. Adv. 32, 751 (1976)CrossRefGoogle Scholar
  23. 23.
    Y. Wu, J. Chen, J. Yuan, J. Xing, Z. Tan, L. Jiang, Q. Chen, J. Zhu, J. Appl. Phys. 120, 194103 (2016)CrossRefGoogle Scholar
  24. 24.
    L. Xie, J. Xing, Z. Tan, L. Jiang, Q. Chen, J. Wu, W. Zhang, D. Xiao, J. Zhu, J. Alloy. Compd. 758, 14 (2018)CrossRefGoogle Scholar
  25. 25.
    J. Yuan, J. Chen, S. Bao, Q. Chen, D. Xiao, J. Zhu, J. Mater. Sci. Mater. Electron. 29, 21051 (2018)CrossRefGoogle Scholar
  26. 26.
    Z. Peng, X. Xing, X. Zeng, Y. Xiang, F. Cao, B. Wu, Mater. Res. Bull. 97, 393 (2018)CrossRefGoogle Scholar
  27. 27.
    Y. Noguchi, M. Miyayama, T. Kudo, Phys. Rev. B 63, 214102 (2012)CrossRefGoogle Scholar
  28. 28.
    Z.G. Yi, Y. Wang, Y.X. Li, Q.R. Yin, J. Appl. Phys. 99, 114101 (2006)CrossRefGoogle Scholar
  29. 29.
    H. Chen, X. Guo, Z. Cui, J. Zhai, Phys. Status Solidi A 210, 1121 (2013)CrossRefGoogle Scholar
  30. 30.
    J. Chen, J. Yuan, S. Bao, Y. Wu, G. Liu, Q. Chen, D. Xiao, J. Zhu, Ceram. Int. 43, 5002 (2017)CrossRefGoogle Scholar
  31. 31.
    C. Long, H. Fan, Y. Wu, Y. Li, J. Appl. Phys. 116, 074111 (2014)CrossRefGoogle Scholar
  32. 32.
    Z. Peng, Y. Chen, Q. Chen, N. Li, X. Zhao, C. Kou, D. Xiao, J. Zhu, J. Alloy. Compd. 590, 210 (2014)CrossRefGoogle Scholar
  33. 33.
    Y. Tsur, T.D. Dunbar, C.A. Randall, J. Electroceram. 7, 25 (2001)CrossRefGoogle Scholar
  34. 34.
    Z. Peng, Q. Chen, D. Liu, Y. Wang, D. Xiao, J. Zhu, Curr. Appl. Phys. 13, 1183 (2013)CrossRefGoogle Scholar
  35. 35.
    Z. Zhou, X. Dong, H. Chen, H. Yan, J. Am. Ceram. Soc. 89, 1756 (2006)CrossRefGoogle Scholar
  36. 36.
    Z. Zhou, X. Dong, H. Yan, H. Chen, C. Mao, J. Appl. Phys. 100, 044112 (2016)CrossRefGoogle Scholar
  37. 37.
    Z. Peng, Q. Chen, Y. Chen, D. Xiao, J. Zhu, Mater. Res. Bull. 59, 125 (2014)CrossRefGoogle Scholar
  38. 38.
    Z. Peng, X. Xing, Y. Xiang, F. Cao, B. Wu, J. Alloy. Compd. 728, 797 (2017)CrossRefGoogle Scholar
  39. 39.
    Z. Peng, D. Yan, Q. Chen, D. Xin, D. Liu, D. Xiao, J. Zhu, Curr. Appl. Phys. 14, 1861 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.College of Materials Science and EngineeringSichuan UniversityChengduPeople’s Republic of China

Personalised recommendations