Advertisement

Maximizing the photocatalytic hydrogen evolution of Z-scheme UiO-66-NH2@Au@CdS by aminated-functionalized linkers

  • Xiaojuan Hou
  • Li Wu
  • Lina Gu
  • Gengsheng Xu
  • Haiwei DuEmail author
  • Yupeng YuanEmail author
Article

Abstract

The Z-scheme photocatalysts with matched rates for reduction and oxidation half reactions benefit from the advantages of efficient light harvesting and effective separation of electron–hole pairs, which can maximize the water splitting performance. However, the 4-electron reaction and the slow transfer of holes render the oxidation reaction upon oxygen evolution photocatalyst to be the rate-determining step. Herein, we report on promoting the oxidation reaction in UiO-66-NH2@Au@CdS Z-scheme photocatalysts by using the aminated-functionalized linker bdc-NH2. Compared with pristine UiO-66 MOFs, UiO-66-NH2 not only extends the light harvesting range but also offers the high oxidation reaction performance matched with photocatalytic hydrogen generation. As a result, the highest H2 generation rate obtained is 39.5 µmol h−1, which is 2.18 times higher than that of the Z-scheme photocatalysts constructed by UiO-66. The present work clearly shows the essential importance in tuning the oxidation capacity of photosystem II in constructing Z-scheme photocatalysts for maximizing the water splitting.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (51872003, 51572003), the SRF for ROCS, SEM, and Technology Foundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China. G. Xu and H. Du acknowledged the Research Start-up Fund of Anhui University (No. J01003210 and S01002112).

Supplementary material

10854_2019_819_MOESM1_ESM.docx (1.4 mb)
Supplementary material 1 (DOCX 1422 KB)

References

  1. 1.
    H. Tada, T. Mitsui, T. Kiyonaga, T. Akita, K. Tanaka, Nat. Mater. 5, 782 (2006)Google Scholar
  2. 2.
    P. Zhou, J. Yu, M. Jaroniec, Adv. Mater. 26, 4920 (2014)Google Scholar
  3. 3.
    H. Li, W. Tu, Y. Zhou, Z. Zou, Adv. Sci. 3, 1500389 (2016)Google Scholar
  4. 4.
    K. Maeda ACS Catal. 3: 1486 (2013)Google Scholar
  5. 5.
    Q. Wang, T. Hisatomi, Q. Jia et al., Nat. Mater. 15, 611 (2016)Google Scholar
  6. 6.
    A. Kudo, MRS Bull. 36, 32 (2011)Google Scholar
  7. 7.
    C. Liu, J. Tang, H.M. Chen, B. Liu, P. Yang, Nano Lett. 13, 2989 (2013)Google Scholar
  8. 8.
    A. Iwase, Y.H. Ng, Y. Ishiguro, A. Kudo, R. Amal, J. Am. Chem. Soc. 133, 11054 (2011)Google Scholar
  9. 9.
    Z.-F. Huang, J. Song, X. Wang et al., Nano Energy 40, 308 (2017)Google Scholar
  10. 10.
    P. Li, Y. Zhou, H. Li et al., Chem. Commun. 51, 800 (2014)Google Scholar
  11. 11.
    S. Chen, Y. Qi, T. Hisatomi et al., Angew. Chem. 127, 8618 (2015)Google Scholar
  12. 12.
    D.J. Martin, P.J.T. Reardon, S.J. Moniz, J. Tang, J. Am. Chem. Soc. 136, 12568 (2014)Google Scholar
  13. 13.
    Z. Zhang, J. Huang, Y. Fang, M. Zhang, K. Liu, B. Dong, Adv. Mater. 29, 1606688 (2017)Google Scholar
  14. 14.
    J. Lee, O.K. Farha, J. Roberts, K.A. Scheidt, S.T. Nguyen, J.T. Hupp, Chem. Soc. Rev. 38, 1450 (2009)Google Scholar
  15. 15.
    H.-L. Jiang, T.A. Makal, H.-C. Zhou, Coord. Chem. Rev. 257, 2232 (2013)Google Scholar
  16. 16.
    J.-L. Wang, C. Wang, W. Lin, ACS Catal. 2, 2630 (2012)Google Scholar
  17. 17.
    Y. Li, H. Xu, S. Ouyang, J. Ye, Phys. Chem. Chem. Phys. 18, 7563 (2016)Google Scholar
  18. 18.
    Z. Liang, C. Qu, W. Guo, R. Zou, Q. Xu Adv. Mater.: 1702891 (2017)Google Scholar
  19. 19.
    L. Jiao, Y. Wang, H.L. Jiang, Q. Xu Adv. Mater.: 1703663 (2017)Google Scholar
  20. 20.
    A. Dhakshinamoorthy, Z. Li, H. Garcia, Chem. Soc. Rev. 47, 8134 (2018)Google Scholar
  21. 21.
    A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Angew. Chem. Int. Ed. 55, 5414 (2016)Google Scholar
  22. 22.
    C.H. Hendon, D. Tiana, M. Fontecave et al., J. Am. Chem. Soc. 135, 10942 (2013)Google Scholar
  23. 23.
    M.B. Chambers, X. Wang, L. Ellezam et al., J. Am. Chem. Soc. 139, 8222 (2017)Google Scholar
  24. 24.
    T.W. Goh, C. Xiao, R.V. Maligal-Ganesh, X. Li, W. Huang, Chem. Eng. Sci. 124, 45 (2015)Google Scholar
  25. 25.
    L. Shen, R. Liang, M. Luo, F. Jing, L. Wu, Phys. Chem. Chem. Phys. 17, 117 (2015)Google Scholar
  26. 26.
    M. Kim, J.F. Cahill, Y. Su, K.A. Prather, S.M. Cohen, Chem. Sci. 3, 126 (2012)Google Scholar
  27. 27.
    J. Santaclara, A. Olivos-Suarez, I. Fossé et al., Faraday Discuss. 201, 71 (2017)Google Scholar
  28. 28.
    J. Tian, Z.-Y. Xu, D.-W. Zhang et al., Nat. Commun. 7, 11580 (2016)Google Scholar
  29. 29.
    E.A. Dolgopolova, N.B. Shustova, MRS Bull. 41, 890 (2016)Google Scholar
  30. 30.
    L. Wu, Y. Tong, L. Gu, Z. Xue, Y. Yuan, Sustain. Energy Fuels 2, 2502 (2018)Google Scholar
  31. 31.
    R. Wang, L. Gu, J. Zhou et al., Adv. Mater. Interfaces 2, 1500037 (2015)Google Scholar
  32. 32.
    J.-J. Zhou, R. Wang, X.-L. Liu et al., Appl. Surf. Sci. 346, 278 (2015)Google Scholar
  33. 33.
    Y.-P. Yuan, L.-S. Yin, S.-W. Cao, G.-S. Xu, C.-H. Li, C. Xue, Appl. Catal. B 168, 572 (2015)Google Scholar
  34. 34.
    L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, J. Mater. Chem. A 1, 11473 (2013)Google Scholar
  35. 35.
    S.-W. Cao, J. Fang, M.M. Shahjamali et al., CrystEngComm 14, 7229 (2012)Google Scholar
  36. 36.
    Y. Wang, Y. Zhang, Z. Jiang et al., Appl. Catal. B 185, 307 (2016)Google Scholar
  37. 37.
    S. Aryal, B. Remant, N. Dharmaraj, N. Bhattarai, C.H. Kim, H.Y. Kim, Spectrochim. Acta A 63, 160 (2006)Google Scholar
  38. 38.
    G.-S. Li, D.-Q. Zhang, J.C. Yu, Environ. Sci. Technol. 43, 7079 (2009)Google Scholar
  39. 39.
    Z. Zhang, A. Li, S.-W. Cao, M. Bosman, S. Li, C. Xue, Nanoscale 6, 5217 (2014)Google Scholar
  40. 40.
    W. Luo, Z. Li, T. Yu, Z. Zou, J. Phys. Chem. C 116, 5076 (2012)Google Scholar
  41. 41.
    Y.-P. Yuan, L.-W. Ruan, J. Barber, S.C.J. Loo, C. Xue, Energy Environ. Sci. 7, 3934 (2014)Google Scholar
  42. 42.
    S.-W. Cao, Z. Yin, J. Barber, F.Y. Boey, S.C.J. Loo, C. Xue, ACS Appl. Mater. Interfaces 4, 418 (2011)Google Scholar
  43. 43.
    J. Wang, J. Zhao, F. Osterloh, Energy Environ. Sci. 8, 2970 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized MaterialsAnhui UniversityHefeiPeople’s Republic of China
  2. 2.Institute of Physical Science and Information TechnologyAnhui UniversityHefeiPeople’s Republic of China

Personalised recommendations