Advertisement

Thermoelectric properties of multi-walled carbon nanotube-embedded Cu2S thermoelectric materials

  • Zezhan Zhang
  • Sixin Wu
  • Yi Niu
  • Jing Jiang
  • Chao WangEmail author
Article
  • 52 Downloads

Abstract

Cuprous sulfide (Cu2S)/carbon nanotube (CNT) composites were successfully fabricated using a simple one-step ultrasonic reaction method in this study. Morphological observation confirmed that the CNTs were homogeneously embedded into Cu2S matrix, therefore the thermoelectric performance of Cu2S was enhanced significantly. Experimental results demonstrated strong phonon scattering caused by newly formed interfaces and boundaries between the Cu2S host material and CNT dispersoids, resulting in reduced thermal conductivity lower than 0.4 W/m/K at 448–798 K. In addition, owing to energy barrier filtering, the Seebeck coefficient increased to 388 µV/K at 800 K, which was 171% higher than that of pure Cu2S. With a CNT molar ratio of 10%, the highest ZT value of the composites reached 0.74 at 750 K, which was 1.3-fold higher than that of pure Cu2S because of the decreased thermal conductivity and enhanced Seebeck coefficient. The present study can be extended to improve the thermoelectric performance of Cu2−xS-based materials.

Notes

Acknowledgements

The work is partly supported by the National Natural Science Foundation of China (Nos. 51672037, 61727818 and 61604031), the subproject of the National Key and Development Program of China (2017YFC0602102), the Department of Science and Technology of Sichuan Province (No. 2016JQ0022).

References

  1. 1.
    L.E. Bell, Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008)CrossRefGoogle Scholar
  2. 2.
    G. Chen, M.S. Dresselhaus, G. Dresselhaus, J.P. Fleurial, T. Caillat, Recent developments in thermoelectric materials. Int. Mater. Rev. 48, 45–66 (2013)CrossRefGoogle Scholar
  3. 3.
    H. Pang, Y.-Y. Piao, Y.-Q. Tan, G.-Y. Jiang, J.-H. Wang, Z.-M. Li, Thermoelectric behaviour of segregated conductive polymer composites with hybrid fillers of carbon nanotube and bismuth telluride. Mater. Lett. 107, 150–153 (2013)CrossRefGoogle Scholar
  4. 4.
    Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, G.J. Snyder, Convergence of electronic bands for high performance bulk thermoelectrics. Nature 473, 66–69 (2011)CrossRefGoogle Scholar
  5. 5.
    W. Li, L. Zheng, B. Ge, S. Lin, X. Zhang, Z. Chen, Y. Chang, Y. Pei, Promoting SnTe as an eco-friendly solution for p-PbTe thermoelectric via band convergence and interstitial defects, Adv. Mater (2017).  https://doi.org/10.1002/adma.201605887 Google Scholar
  6. 6.
    J.P. Heremans, C.M. Thrush, D.T. Morelli, Thermopower enhancement in PbTe with Pb precipitates. J. Appl. Phys. 98, 063703 (2005)CrossRefGoogle Scholar
  7. 7.
    Q. Zhang, H. Wang, W. Liu, H. Wang, B. Yu, Q. Zhang, Z. Tian, G. Ni, S. Lee, K. Esfarjani, G. Chen, Z. Ren, Enhancement of thermoelectric figure-of-merit by resonant states of aluminium doping in lead selenide. Energy Environ. Sci. 5, 5246–5251 (2012)CrossRefGoogle Scholar
  8. 8.
    R.J. Korkosz, T.C. Chasapis, S.H. Lo, J.W. Doak, Y.J. Kim, C.I. Wu, E. Hatzikraniotis, T.P. Hogan, D.N. Seidman, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, High ZT in p-type (PbTe)1-2×(PbSe)×(PbS)× thermoelectric materials. J. Am. Chem. Soc. 136, 3225–3237 (2014)CrossRefGoogle Scholar
  9. 9.
    G.-K. Ren, S.-Y. Wang, Y.-C. Zhu, K.J. Ventura, X. Tan, W. Xu, Y.-H. Lin, J. Yang, C.-W. Nan, Enhancing thermoelectric performance in hierarchically structured BiCuSeO by increasing bond covalency and weakening carrier–phonon coupling, Energy Environ. Sci. 10, 1590–1599 (2017)CrossRefGoogle Scholar
  10. 10.
    L.-D. Zhao, S.-H. Lo, Y. Zhang, H. Sun, G. Tan, C. Uher, C. Wolverton, V.P. Dravid, M.G. Kanatzidis, Ultralow thermal conductivity and high thermoelectric figure of merit in SnSe crystals. Nature 508, 373–377 (2014)CrossRefGoogle Scholar
  11. 11.
    Y.N.C. Wang, J. Jiang, Y.D. Chen, H.Q. Tian, R. Zhang, T. Zhou, J.F. Xia, Y. Pan, S.Y. Wang, Hybrid thermoelectric battery electrode FeS2 study. Nano Energy 45, 432–438 (2018)CrossRefGoogle Scholar
  12. 12.
    S.V. Faleev, F. Léonard, Theory of enhancement of thermoelectric properties of materials with nanoinclusions, Phys. Rev. B 77, 214304 (2008)CrossRefGoogle Scholar
  13. 13.
    W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri, A. Majumdar, Thermal conductivity reduction and thermoelectric figure of merit increase by embedding nanoparticles in crystalline semiconductors. Phys. Rev. Lett. 96, 045901 (2006)CrossRefGoogle Scholar
  14. 14.
    M.S. Dresselhaus, G. Chen, M.Y. Tang, R.G. Yang, H. Lee, D.Z. Wang, Z.F. Ren, J.P. Fleurial, P. Gogna, New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 1043–1053 (2007)CrossRefGoogle Scholar
  15. 15.
    Z. Xiong, X. Chen, X. Huang, S. Bai, L. Chen, High thermoelectric performance of Yb0.26Co4Sb12/yGaSb nanocomposites originating from scattering electrons of low energy. Acta Mater. 58, 3995–4002 (2010)CrossRefGoogle Scholar
  16. 16.
    M.H. Lee, K.-R. Kim, J.-S. Rhyee, S.-D. Park, G.J. Snyder, High thermoelectric figure-of-merit in Sb2Te3/Ag2Te bulk composites as Pb-free p-type thermoelectric materials. J. Mater. Chem. C 3, 10494–10499 (2015)CrossRefGoogle Scholar
  17. 17.
    K.-H. Tu, S.-S. Li, W.-C. Li, D.-Y. Wang, J.-R. Yang, C.-W. Chen, Solution processable nanocarbon platform for polymer solar cells. Energy Environ. Sci. 4, 3521 (2011)CrossRefGoogle Scholar
  18. 18.
    B.C. St-Antoine, D. Menard, R. Martel, Single-walled carbon nanotube thermopile for broadband light detection. Nano Lett. 11, 609–613 (2011)CrossRefGoogle Scholar
  19. 19.
    P. Kim, L. Shi, A. Majumdar, P.L. McEuen, Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett. 87, 215502 (2001)CrossRefGoogle Scholar
  20. 20.
    R. Nunna, P. Qiu, M. Yin, H. Chen, R. Hanus, Q. Song, T. Zhang, M.-Y. Chou, M.T. Agne, J. He, G.J. Snyder, X. Shi, L. Chen, Ultrahigh thermoelectric performance in Cu2Se-based hybrid materials with highly dispersed molecular CNTs, Energy Environ. Sci. 10, 1928–1935 (2017)CrossRefGoogle Scholar
  21. 21.
    K.T. Kim, S.Y. Choi, E.H. Shin, K.S. Moon, H.Y. Koo, G.-G. Lee, G.H. Ha, The influence of CNTs on the thermoelectric properties of a CNT/Bi2Te3 composite. Carbon 52, 541–549 (2013)CrossRefGoogle Scholar
  22. 22.
    C. Meng, C. Liu, S. Fan, A promising approach to enhanced thermoelectric properties using carbon nanotube networks. Adv. Mater. 22, 535–539 (2010)CrossRefGoogle Scholar
  23. 23.
    F. Ren, H. Wang, P.A. Menchhofer, J.O. Kiggans, Thermoelectric and mechanical properties of multi-walled carbon nanotube doped Bi0.4Sb1.6Te3 thermoelectric material. Appl. Phys. Lett. 103, 221907 (2013)CrossRefGoogle Scholar
  24. 24.
    H. Tang, F.-H. Sun, J.-F. Dong, H.L. Zhuang, Y. Pan, J. F. Li, Graphene network in copper sulfide leading to enhanced thermoelectric properties and thermal stability. Nano Energy 49, 267–273 (2018)CrossRefGoogle Scholar
  25. 25.
    C. Wang, Y. Chen, J. Jiang, R. Zhang, Y. Niu, T. Zhou, J. Xia, H. Tian, J. Hu, P. Yang, Improved thermoelectric properties of SnS synthesized by chemical precipitation. RSC Adv. 7, 16795–16800 (2017)CrossRefGoogle Scholar
  26. 26.
    X.B. Zhao, X.H. Ji, Y.H. Zhang, T.J. Zhu, J.P. Tu, X.B. Zhang, Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites. Appl. Phys. Lett. 86, 062111 (2005)CrossRefGoogle Scholar
  27. 27.
    S. Wu, J. Jiang, Y. Liang, P. Yang, Y. Niu, Y. Chen, J. Xia, C. Wang, Chemical precipitation synthesis and thermoelectric properties of copper sulfide, J. Electron. Mater. 43, 2202 (2017)Google Scholar
  28. 28.
    Y. He, T. Day, T. Zhang, H. Liu, X. Shi, L. Chen, G.J. Snyder, High thermoelectric performance in non-toxic earth-abundant copper sulfide. Adv. Mater. 26, 3974–3978 (2014)CrossRefGoogle Scholar
  29. 29.
    Y.Q. Tang, Z.H. Ge, J. Feng, Synthesis and thermoelectric properties of copper sulfides via solution phase methods and spark plasma sintering. Crystals 7, 141 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Clean Energy Materials and Engineering Center, School of Electronic Science and Engineering, State Key Laboratory of Electronic Thin Film and Integrated DevicesUniversity of Electronic Science and Technology of ChinaChengduChina

Personalised recommendations