Advertisement

Large photoluminescence enhancement in mechanical-exfoliated one-dimensional ZnO nanorods

  • Ali HassanEmail author
  • Yuhua Jin
  • Muhammad Azam
  • Muhammad Irfan
  • Yijian Jiang
Article
  • 26 Downloads

Abstract

Herein, we presented the low-dimensional mechanical-exfoliated growth of hexagonal ZnO nanorods. The structural, morphological and optical properties have been investigated. The hexagonal wurtzite structure has been confirmed via X-ray diffraction graphs showing the (002) preferred orientation. The rod-like hexagonal structure has been revealed in the Field-emission Scanning electron microscopy (FE-SEM) and High-resolution Transmission Electron Microscopy (HR-TEM) analysis. Threefold enhancement in near-band-edge (NBE) emission of photoluminescence spectra has been achieved in low-dimensional ZnO nanorods (NRs) without any doping. This paves new ways for low-dimensional semiconductors in order to fabricate high-efficient luminescence devices.

Notes

Acknowledgements

This work was carried out with the financial support of the National Natural Science Foundation of China projects no. (NSFC Project No. 11674018, 11504012) and China scholarship council.

Compliance with ethical standards

Conflict of interest

There are no conflicts to declare.

References

  1. 1.
    N.T. Hung, A.R.T. Nugraha, R. Saito, Size effect in thermoelectric power factor of nondegenerate and degenerate low-dimensional semiconductors. Mater. Today Proc. 4, 12368–12373 (2017)CrossRefGoogle Scholar
  2. 2.
    L. Zhang, L. Chen, J. Liu, X. Fang, Z. Zhang, Effect of morphology of carbon nanomaterials on thermo-physical characteristics, optical properties and photo-thermal conversion performance of nanofluids. Renew. Energy 99, 888–897 (2016)CrossRefGoogle Scholar
  3. 3.
    Q. Weng, X. Wang, X. Wang, Y. Bando, D. Golberg, Functionalized hexagonal boron nitride nanomaterials: emerging properties and applications. Chem. Soc. Rev. 45, 3989–4012 (2016)CrossRefGoogle Scholar
  4. 4.
    M. Wang, E.-H. Yang, THz applications of 2D materials: graphene and beyond. Nano-Struct. Nano-Objects 15, 107–113 (2018)CrossRefGoogle Scholar
  5. 5.
    A. Banik, S. Roychowdhury, K. Biswas, The journey of tin chalcogenides towards high-performance thermoelectrics and topological materials. Chem. Commun. 54, 6573–6590 (2018)CrossRefGoogle Scholar
  6. 6.
    M. Petrović, M. Horn-von Hoegen, F.-J. Meyer zu Heringdorf, Lateral heterostructures of hexagonal boron nitride and graphene: BCN alloy formation and microstructuring mechanism. Appl. Surf. Sci. 455, 1086–1094 (2018)CrossRefGoogle Scholar
  7. 7.
    J.R. Reimers, S.A. Tawfik, M.J. Ford, van der, Waals forces control ferroelectric–antiferroelectric ordering in CuInP2S6 and CuBiP2Se6 laminar materials. Chem. Sci. 9, 7620–7627 (2018)CrossRefGoogle Scholar
  8. 8.
    J.-H. Pöhls, Z. Luo, U. Aydemir, J.-P. Sun, S. Hao, J. He, I.G. Hill, G. Hautier, A. Jain, X. Zeng, C. Wolverton, G.J. Snyder, H. Zhu, M.A. White, First-principles calculations and experimental studies of XYZ2 thermoelectric compounds: detailed analysis of van der Waals interactions. J. Mater. Chem. A 6(40), 19502–19519 (2018)CrossRefGoogle Scholar
  9. 9.
    W. Hu, J. Yang, Two-dimensional van der Waals heterojunctions for functional materials and devices. J. Mater. Chem. C 5, 12289–12297 (2017)CrossRefGoogle Scholar
  10. 10.
    A. Noy, A.B. Artyukhin, N. Misra, Bionanoelectronics with 1D materials. Mater. Today 12, 22–31 (2009)CrossRefGoogle Scholar
  11. 11.
    Z. Zheng, J. Lin, X. Song, Z. Lin, Optical properties of ZnO nanorod films prepared by CBD method. Chem. Phys. Lett. 712, 155–159 (2018)CrossRefGoogle Scholar
  12. 12.
    N. Tit, W. Othman, A. Shaheen, M. Ali, High selectivity of N-doped ZnO nano-ribbons in detecting H2, O2 and CO2 molecules: Effect of negative-differential resistance on gas-sensing. Sens. Actuators B 270, 167–178 (2018)CrossRefGoogle Scholar
  13. 13.
    R.K. Kampara, P.K. Rai, B.G. Jeyaprakash, Gold functionalized ZnO nanowires as a fast response/recovery ammonia sensor. Appl. Surf. Sci. 449, 244–249 (2018)CrossRefGoogle Scholar
  14. 14.
    H. Askari, A. Khajepour, M.B. Khamesee, Z. Saadatnia, Z.L. Wang, Piezoelectric and triboelectric nanogenerators: trends and impacts. Nano Today 22, 10–13 (2018)CrossRefGoogle Scholar
  15. 15.
    A. Hassan, Y. Jin, F. Chao, M. Irfan, Y. Jiang, Dopant-driven enhancements in the optoelectronic properties of laser ablated ZnO: Ga thin films. J. Appl. Phys. 123, 161401 (2018)CrossRefGoogle Scholar
  16. 16.
    S. Yue, L. Wang, D. Zhang, S. Yang, X. Guo, Y. Lu, J. He, Facile synthesis of one-dimensional Fe-doped ZnO nanostructures from a single-source inorganic precursor. Mater. Lett. 135, 107–109 (2014)CrossRefGoogle Scholar
  17. 17.
    K. Wijeratne, J. Bandara, Aspect-ratio dependent electron transport and recombination in dye-sensitized solar cells fabricated with one-dimensional ZnO nanostructures. Electrochim. Acta 148, 302–309 (2014)CrossRefGoogle Scholar
  18. 18.
    Y. Jing, X. Bao, W. Wei, C. Li, K. Sun, D.P.R. Aplin, Y. Ding, Z.-L. Wang, Y. Bando, D. Wang, Catalyst-free heteroepitaxial MOCVD growth of InAs nanowires on Si substrates. J. Phys. Chem. C 118, 1696–1705 (2014)CrossRefGoogle Scholar
  19. 19.
    Y. Cohin, O. Mauguin, L. Largeau, G. Patriarche, F. Glas, E. Søndergård, J.-C. Harmand, Growth of vertical GaAs nanowires on an amorphous substrate via a fiber-textured Si platform. Nano Lett. 13, 2743–2747 (2013)CrossRefGoogle Scholar
  20. 20.
    E.F. Manley, J. Strzalka, T.J. Fauvell, N.E. Jackson, M.J. Leonardi, N.D. Eastham, T.J. Marks, L.X. Chen, In situ GIWAXS analysis of solvent and additive effects on PTB7 thin film microstructure evolution during spin coating. Adv. Mater. 29, 1703933 (2017)CrossRefGoogle Scholar
  21. 21.
    A.A. Khan, Z. Yu, U. Khan, L. Dong, Solution processed trilayer structure for high-performance perovskite photodetector. Nanoscale Res. Lett. 13, 399 (2018)CrossRefGoogle Scholar
  22. 22.
    A. Hassan, M. Irfan, Y. Jiang, Quantum confinement effect and size-dependent photoluminescence in laser ablated ultra-thin GZO films. Mater. Lett. 210, 358–362 (2018)CrossRefGoogle Scholar
  23. 23.
    Z. Li, N. Wang, Z. Lin, J. Wang, W. Liu, K. Sun, Y.Q. Fu, Z. Wang, Room-temperature high-performance H2S sensor based on porous CuO nanosheets prepared by hydrothermal method. ACS Appl. Mater. Interfaces 8, 20962–20968 (2016)CrossRefGoogle Scholar
  24. 24.
    S. Kumar, N.L. Reddy, A. Kumar, M.V. Shankar, V. Krishnan, Two dimensional N-doped ZnO-graphitic carbon nitride nanosheets heterojunctions with enhanced photocatalytic hydrogen evolution. Int. J. Hydrog. Energy 43, 3988–4002 (2018)CrossRefGoogle Scholar
  25. 25.
    S. Parikshit, S.S. Jones, P.T. Gomathi, B. Sushmee, Flexible substrate based 2D ZnO (n)/graphene (p) rectifying junction as enhanced broadband photodetector using strain modulation. 2D Materials 4, 025053 (2017)CrossRefGoogle Scholar
  26. 26.
    M.R. Alenezi, S.J. Henley, N.G. Emerson, S.R.P. Silva, From 1D and 2D ZnO nanostructures to 3D hierarchical structures with enhanced gas sensing properties. Nanoscale 6, 235–247 (2014)CrossRefGoogle Scholar
  27. 27.
    A. Hassan, F. Chao, Y. Jin, M. Irfan, Y. Jiang, First principle calculations and opto-electric enhancement in laser ablated GZO thin films. Opt. Quant. Electron. 50, 143 (2018)CrossRefGoogle Scholar
  28. 28.
    X. Zhou, G.B. Thompson, The influence of alloying interactions on thin film growth stresses. Appl. Surf. Sci. 463, 545–555 (2019)CrossRefGoogle Scholar
  29. 29.
    X. Xu, M. Funato, Y. Kawakami, K. Okamoto, K. Tamada, Grain size dependence of surface plasmon enhanced photoluminescence. Opt. Express 21, 3145–3151 (2013)CrossRefGoogle Scholar
  30. 30.
    K.R. Nandanapalli, D. Mudusu, Surface passivated zinc oxide (ZnO) nanorods by atomic layer deposition of ultrathin ZnO layers for energy device applications. ACS Appl. Nano Mater. 1, 4083–4091 (2018)CrossRefGoogle Scholar
  31. 31.
    C. Xin, J. Zheng, Y. Su, S. Li, B. Zhang, Y. Feng, F. Pan, Few-layer tin sulfide: a new black-phosphorus-analogue 2D material with a sizeable band gap, odd–even quantum confinement effect, and high carrier mobility. J. Phys. Chem. C 120, 22663–22669 (2016)CrossRefGoogle Scholar
  32. 32.
    A.A. Habeeb, H. Long, L. Bao, K. Wang, B. Wang, P. Lu, Surface plasmonic resonances and enhanced IR spectra in GZO nano-triangle arrays. Mater. Lett. 172, 36–39 (2016)CrossRefGoogle Scholar
  33. 33.
    D.J. Gargas, H. Gao, H. Wang, P. Yang, High quantum efficiency of band-edge emission from ZnO nanowires. Nano Lett. 11, 3792–3796 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of Laser EngineeringBeijing University of TechnologyBeijingChina
  2. 2.College of Materials Science and EngineeringBeijing University of TechnologyBeijingChina
  3. 3.Beijing Key Laboratory of Low Dimensional Semiconductor Materials and Devices, Institute of SemiconductorsChinese Academy of SciencesBeijingChina
  4. 4.Beijing National Laboratory for Condensed Matter Physics, Institute of PhysicsChinese Academy of SciencesBeijingChina

Personalised recommendations