Advertisement

Preparation of ternary Pt–NiO–ZnO hybrids and investigation of its photocatalytic performance toward methyl orange

  • Limin Zhang
  • Ming Qin
  • Yinkai Yu
  • Mingkuan Zhang
  • Xinran Zhao
  • Jin QianEmail author
  • Hongjing WuEmail author
Article
  • 67 Downloads

Abstract

ZnO has received much attention as a photocatalyst due to its abundant source and nontoxic nature. However, the rapid recombination of e/h+ pairs gravely hinders the practical application of ZnO photocatalyst. Incorporation of noble metal Pt and the formation of NiO–ZnO heterostructures have been proved effective way to improve the photocatalytic performance of ZnO. However, photocatalytic behavior of ternary Pt–NiO–ZnO hybrids has not been studied yet. In this paper, we successfully prepared Pt doped ZnO as well as NiO–ZnO heterostructures. The photocatalytic performance of the as-prepared composites has been systematically investigated. Under the optimized ratio of Ni/Zn = 2:10, NiO–ZnO–Pt ternary hybrids were fabricated and NiO–ZnO with 1% of Pt incorporated revealed the highest degradation rate toward methyl orange. Nearly 95% of methyl orange can be degraded within 90 min. The photocatalytic reaction mechanism of the MO degradation by ternary Pt–NiO–ZnO hybrids has also been proposed. The Pt–NiO–ZnO composite not only can serve as a high-performance photocatalyst, but also can be applied in the fields of sensors, hydrogen generation and environmental pollution treatment, etc.

Notes

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 21806129, 51872238), the Fundamental Research Funds for the Central Universities (Grant Nos. 3102018zy045 and 3102017zy002) and the Natural Science Basic Research Plan in Shaanxi Province of China (No. 2017JQ5116). Funding was provided by National Natural Science Foundation of China with Grant No. 51704242 and Natural Science Foundation of Shaanxi Province (CN) with Grant no. 2018JM5094.

References

  1. 1.
    A. Afkhami, R. Moosavi, Adsorptive removal of Congo red, a carcinogenic textile dye, from aqueous solutions by maghemite nanoparticles. J. Hazard. Mater. 174, 398–403 (2010)CrossRefGoogle Scholar
  2. 2.
    T. Kanagaraj, S. Thiripuranthagan, Photocatalytic activities of novel SrTiO3-BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl. Catal. B 207, 218–232 (2017)CrossRefGoogle Scholar
  3. 3.
    Y. Bao, M. Qin, Y. Yu, L. Zhang, H. Wu, Facile fabrication of porous NiCo2O4 nanosheets with high adsorption performance toward Congo red. J. Phys. Chem. Solids 124, 289–295 (2019)CrossRefGoogle Scholar
  4. 4.
    K. Lin, M. Qin, X. Geng, L. Wang, H. Wu, ZnCo2O4 nanorods as a novel class of high-performance adsorbent for removal of methyl blue. Adv. Powder Technol. 29, 1933–1939 (2018)CrossRefGoogle Scholar
  5. 5.
    J. Zhu, M. Tian, Y. Zhang, H. Zhang, J. Liu, Fabrication of a novel “loose” nanofiltration membrane by facile blending with Chitosan–Montmorillonite nanosheets for dyes purification. Chem. Eng. J. 265, 184–193 (2015)CrossRefGoogle Scholar
  6. 6.
    Z. Zhu, P. Wu, G. Liu, X. He, B. Qi, G. Zeng, W. Wang, Y. Sun, F. Cui, Ultrahigh adsorption capacity of anionic dyes with sharp selectivity through the cationic charged hybrid nanofibrous membranes. Chem. Eng. J. 313, 957–966 (2017)CrossRefGoogle Scholar
  7. 7.
    Y. Fu, T. Viraraghavan, Removal of Congo Red from an aqueous solution by fungus Aspergillus niger. Adv. Environ. Res. 7, 239–247 (2002)CrossRefGoogle Scholar
  8. 8.
    C. Yu, W. Zhou, L. Zhu, G. Li, K. Yang, R. Jin, Integrating plasmonic Au nanorods with dendritic like α-Bi2O3/Bi2O2CO3 heterostructures for superior visible-light-driven photocatalysis. Appl. Catal. B 184, 1–11 (2016)CrossRefGoogle Scholar
  9. 9.
    T. Xu, J. Hu, Y. Yang, W. Que, X. Yin, H. Wu, L. Chen, Ternary system of ZnO nanorods/reduced graphene oxide/CuInS2 quantum dots for enhanced photocatalytic performance. J. Alloys Compd. 734, 196–203 (2018)CrossRefGoogle Scholar
  10. 10.
    M. Mehrjouei, S. Müller, D. Möller, A review on photocatalytic ozonation used for the treatment of water and wastewater. Chem. Eng. J. 263, 209–219 (2015)CrossRefGoogle Scholar
  11. 11.
    X. Liu, J. Iocozzia, Y. Wang, Noble metal-metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ. Sci. 10, 402–434 (2017)CrossRefGoogle Scholar
  12. 12.
    S.G. Kumar, K.S.R.K. Rao, Comparison of modification strategies towards enhanced charge carrier separation and photocatalytic degradation activity of metal oxide semiconductors (TiO2, WO3 and ZnO). Appl. Surf. Sci. 391, 124–148 (2017)CrossRefGoogle Scholar
  13. 13.
    Y.K. Mishra, G. Modi, V. Cretu, V. Postica, O. Lupan, T. Reimer, I. Paulowicz, V. Hrkac, W. Benecke, L. Kienle, R. Adelung, Direct growth of freestanding ZnO tetrapod networks for multifunctional applications in photocatalysis, UV photodetection, and gas sensing. ACS Appl. Mater. Inter. 7, 14303–14316 (2015)CrossRefGoogle Scholar
  14. 14.
    X. Zhang, Y. Wang, B. Liu, Y. Sang, H. Liu, Heterostructures construction on TiO2 nanobelts: a powerful tool for building high-performance photocatalysts. Appl. Catal. B 202, 620–641 (2017)CrossRefGoogle Scholar
  15. 15.
    U. Alam, A. Khan, W. Raza, A. Khan, D. Bahnemann, M. Muneer, Highly efficient Y and V co-doped ZnO photocatalyst with enhanced dye sensitized visible light photocatalytic activity. Catal. Today 284, 169–178 (2017)CrossRefGoogle Scholar
  16. 16.
    X. Zhou, N. Liu, P. Schmuki, Photocatalysis with TiO2 nanotubes: “colorful” reactivity and designing site-specific photocatalytic centers into TiO2 nanotubes. ACS Catal. 7, 3210–3235 (2017)CrossRefGoogle Scholar
  17. 17.
    J. Kim, C.W. Lee, W. Choi, Platinized WO3 as an environmental photocatalyst that generates OH radicals under visible light. Environ. Sci. Technol. 44, 6849–6854 (2010)CrossRefGoogle Scholar
  18. 18.
    Y.M. Hunge, A.A. Yadav, B.M. Mohite, V.L. Mathe, C.H. Bhosale, Photoelectrocatalytic degradation of sugarcane factory wastewater using WO3/ZnO thin films. J. Mater. Sci.: Mater. Electron. 29, 3808–3816 (2018)Google Scholar
  19. 19.
    Y.M. Hunge, A.A. Yadav, S.B. Kulkarni, V.L. Mathe, A multifunctional ZnO thin film based devices for photoelectrocatalytic degradation of terephthalic acid and CO2 gas sensing applications. Sens. Actuators B 274, 1–9 (2018)CrossRefGoogle Scholar
  20. 20.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Oxidative degradation of phthalic acid using TiO2 photocatalyst. J. Mater. Sci.: Mater. Electron. 29, 6183–6187 (2018)Google Scholar
  21. 21.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Ultrasound assisted synthesis of WO3-ZnO nanocomposites for brilliant blue dye degradation. Ultrason. Sonochem. 45, 116–122 (2018)CrossRefGoogle Scholar
  22. 22.
    Y.M. Hunge, A.A. Yadav, V.L. Mathe, Photoelectrocatalytic degradation of methylene blue using spray deposited ZnO thin films under UV illumination. MOJ Poly. Sci. 1(4), 00020 (2018)Google Scholar
  23. 23.
    H. Maltanava, S. Poznyak, E. Ovodok, M. Ivanovskaya, J. Tedim, Synthesis of ZnO mesoporous powders and their application in dye photodegradation. Mater. Today Proc. 9, 17414–17421 (2018)CrossRefGoogle Scholar
  24. 24.
    S. Wang, P. Kuang, B. Cheng, J. Yu, C. Jiang, ZnO hierarchical microsphere for enhanced photocatalytic activity. J. Alloys Compd. 741, 622–632 (2018)CrossRefGoogle Scholar
  25. 25.
    P. She, K. Xu, S. Yin, Y. Shang, Q. He, S. Zeng, H. Sun, Z. Liu, Bioinspired self-standing macroporous Au/ZnO sponges for enhanced photocatalysis. J. Colloid Interface Sci. 514, 40–48 (2018)CrossRefGoogle Scholar
  26. 26.
    C. Yu, K. Yang, Y. Xie, Q. Fan, J.C. Yu, Q. Shu, C. Wang, Novel hollow Pt-ZnO nanocomposite microspheres with hierarchical structure and enhanced photocatalytic activity and stability. Nanoscale 5, 2142 (2013)CrossRefGoogle Scholar
  27. 27.
    J. And, W. Choi, Photocatalytic Reactivity of surface platinized TiO2: substrate specificity and the effect of Pt oxidation state. J. Phys. Chem. B 109, 7399–7406 (2005)CrossRefGoogle Scholar
  28. 28.
    A. Di Mauro, M. Zimbone, M. Scuderi, G. Nicotra, M.E. Fragalà, G. Impellizzeri, Effect of Pt nanoparticles on the photocatalytic activity of ZnO nanofibers. Nanoscale Res. Lett. 10, 484 (2015)CrossRefGoogle Scholar
  29. 29.
    V. Vamathevan, R. Amal, D. Beydoun, G. Low, S. Mcevoy, Photocatalytic oxidation of organics in water using pure and silver-modified titanium dioxide particles. J. Photochem. Photobiol. A 148, 233–245 (2002)CrossRefGoogle Scholar
  30. 30.
    Z. Zhang, C. Shao, X. Li, C. Wang, M. Zhang, Y. Liu, Electrospun nanofibers of p-Type NiO/n-Type ZnO heterojunctions with enhanced photocatalytic activity. ACS Appl. Mater. Inter. 2, 2915–2923 (2010)CrossRefGoogle Scholar
  31. 31.
    A. Hameed, T. Montini, V. Gombac, P. Fornasiero, Photocatalytic decolourization of dyes on NiO-ZnO nano-composites. Photoch. Photobio. Sci. 8, 677–682 (2009)CrossRefGoogle Scholar
  32. 32.
    C. Luo, D. Li, W. Wu, Y. Zhang, C. Pan, Preparation of porous micro–nano-structure NiO/ZnO heterojunction and its photocatalytic property. RSC Adv. 4, 3090–3095 (2014)CrossRefGoogle Scholar
  33. 33.
    C. Chang, C. Lin, J. Chen, M. Hsu, Ce-doped ZnO nanorods based low operation temperature NO2 gas sensors. Ceram. Int. 40, 10867–10875 (2014)CrossRefGoogle Scholar
  34. 34.
    M. Qin, K. Lin, Q. Shuai, H. Liang, J. Peng, C. Mao, Y. Ji, H. Wu, Facile synthesis of 2D single-phase Ni0.9Zn0.1O and its application in decolorization of dye. J. Mater. Sci.: Mater. Electron. 29, 9740–9744 (2018)Google Scholar
  35. 35.
    G. Wu, Z. Jia, Y. Cheng, H. Zhang, X. Zhou, H. Wu, Easy synthesis of multi-shelled ZnO hollow spheres and their conversion into hedgehog-like ZnO hollow spheres with superior rate performance for lithium ion batteries. Appl. Surf. Sci. 464, 472–478 (2019)CrossRefGoogle Scholar
  36. 36.
    A. Sápi, A. Varga, G.F. Samu, D. Dobó, K.L. Juhász, B. Takács, E. Varga, Á Kukovecz, Z. Kónya, C. Janáky, Photoelectrochemistry by design: tailoring the nanoscale structure of Pt/NiO composites leads to enhanced photoelectrochemical hydrogen evolution performance. J. Phys. Chem. C 121, 12148–12158 (2017)CrossRefGoogle Scholar
  37. 37.
    H. Wu, G. Wu, Y. Ren, L. Yang, L. Wang, X. Li, Co2+/Co3+ ratio dependence of electromagnetic wave absorption in hierarchical NiCo2O4-CoNiO2 hybrids. J. Mater. Chem. C. 3, 7677–7690 (2015)CrossRefGoogle Scholar
  38. 38.
    H. Tada, K. Teranishi, Y. Inubushi, S. Ito, Ag nanocluster loading effect on TiO2 photocatalytic reduction of Bis(2-dipyridyl)disulfide to 2-Mercaptopyridine by H2O. Langmuir, 16, 3304–3309 (2000)CrossRefGoogle Scholar
  39. 39.
    C. Su, L. Liu, M. Zhang, Y. Zhang, C. Shao, Fabrication of Ag/TiO2 nanoheterostructures with visible light photocatalytic function via a solvothermal approach. CrystEngComm 14, 3989–3999 (2012)CrossRefGoogle Scholar
  40. 40.
    S. Juntrapirom, D. Tantraviwat, S. Suntalelat, O. Thongsook, S. Phanichphant, B. Inceesungvorn, Visible light photocatalytic performance and mechanism of highly efficient SnS/BiOI heterojunction. J. Colloid Interface Sci. 504, 711–720 (2017)CrossRefGoogle Scholar
  41. 41.
    J. Li, F. Zhao, L. Zhang, M. Zhang, H. Jiang, S. Li, J. Li, Electrospun hollow ZnO/NiO heterostructures with enhanced photocatalytic activity. RSC Adv. 5, 67610–67616 (2015)CrossRefGoogle Scholar
  42. 42.
    F. Tian, Y. Liu, Synthesis of p-type NiO/n-type ZnO heterostructure and its enhanced photocatalytic activity. Scr. Mater. 69, 417–419 (2013)CrossRefGoogle Scholar
  43. 43.
    J. Wu, C. Luo, D. Li, Q. Fu, C. Pan, Preparation of Au nanoparticle-decorated ZnO/NiO heterostructure via nonsolvent method for high-performance photocatalysis. J. Mater. Sci. 52, 1285–1295 (2017)CrossRefGoogle Scholar
  44. 44.
    S.D. Dolić, D.J. Jovanović, K. Smits, B. Babić, M. Marinović-Cincović, S. Porobić, M.D. Dramićanin, A comparative study of photocatalytically active nanocrystalline tetragonal zyrcon-type and monoclinic scheelite-type bismuth vanadate. Ceram. Int. 44, 17953–17961 (2018)CrossRefGoogle Scholar
  45. 45.
    Y. Yu, X. Meng, N. Zeng, Y. Dan, L. Jiang, Covalent immobilization of TiO2 within macroporous polymer monolith as a facilely recyclable photocatalyst for water decontamination. Colloid Polym. Sci. 296, 1419–1429 (2018)CrossRefGoogle Scholar
  46. 46.
    A.N. Kadam, T.G. Kim, D.S. Shin, K.M. Garadkar, J. Park, Morphological evolution of Cu doped ZnO for enhancement of photocatalytic activity. J. Alloys Compd 710, 102–113 (2017)CrossRefGoogle Scholar
  47. 47.
    S.M. Yakout, Pure, G. Li, Na, Mn or Fe codoped ZnO nanoparticles: insights into the magnetic and photocatalytic properties. Solid State Sci. 83, 207–217 (2018)CrossRefGoogle Scholar
  48. 48.
    Z. He, X. Sun, X. Gu, SrTiO3 nanoparticles and nanofibers: synthesis and comparison of photocatalytic properties. J. Mater. Sci.: Mater. Electron. 28, 13950–13955 (2017)Google Scholar
  49. 49.
    A.N. Kadam, D.P. Bhopate, V.V. Kondalkar, S.M. Majhi, C.D. Bathula, A. Tran, S. Lee, Facile synthesis of Ag-ZnO core-shell nanostructures with enhanced photocatalytic activity. J. Ind. Eng. Chem. 61, 78–86 (2018)CrossRefGoogle Scholar
  50. 50.
    H. Wu, G. Wu, Y. Ren, X. Li, L. Wang, Multishelled metal oxide hollow spheres: easy synthesis and formation mechanism. Chem.-A Eur. J, 22, 8864–8871 (2016)CrossRefGoogle Scholar
  51. 51.
    H. Shen, X. Zhao, L. Duan, R. Liu, H. Wu, T. Hou, X. Jiang, H. Gao, Influence of interface combination of RGO-photosensitized SnO2@RGO core-shell structures on their photocatalytic performance. Appl. Surf. Sci. 391, 627–634 (2017)CrossRefGoogle Scholar
  52. 52.
    M. Qin, Q. Shuai, G. Wu, B. Zheng, Z. Wang, H. Wu, Zinc ferrite composite material with controllable morphology and its applications. Mater. Sci. Eng. B 224, 125–138 (2017)CrossRefGoogle Scholar
  53. 53.
    H. Wu, L. Wang, Phase transformation-induced crystal plane effect of iron oxide micropine dendrites on gaseous toluene photocatalytic oxidation. Appl. Surf. Sci. 288, 398–404 (2014)CrossRefGoogle Scholar
  54. 54.
    Y. Yu, S. Qu, D. Zang, L. Wang, H. Wu, Fast synthesis of Pt nanocrystals and Pt/microporous La2O3 materials using acoustic levitation. Nanoscale Res. Lett. 13, 50 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of ScienceNorthwestern Polytechnical UniversityXi’anPeople’s Republic of China
  2. 2.State Key Laboratory of Geohazard Prevention and Geoenvironment ProtectionChengduPeople’s Republic of China

Personalised recommendations