The effect of Ce–Co substitution on the structural and the electromagnetic properties of barium hexaferrite

  • İsa ArazEmail author


Ce–Co substituted, barium hexaferrite with the chemical composition of Ba0.5Ce0.5Fe11CoO19 was prepared by using the ceramic technique. The structural properties of the Ce–Co substituted, barium hexaferrite was investigated using X-ray diffractometer. The magnetic hysteresis loop of the sample was characterized by vibrating sample magnetometry. In order to identify the surface morphology of the sample, field emission scanning electron microscopy was used. Using the transmission/reflection coaxial line method in the range of 2–18 GHz, the complex permeability and complex permittivity, the reflection loss (RL) properties, absorption loss and shielding effectiveness of the prepared composition were determined. The maximum RL value of − 31.4 dB at 11.4 GHz with a 3 mm thickness sample was obtained and the maximum shielding effectiveness value was observed around 59.2 dB.



The author would like to acknowledge Gebze Technical University for support vector network analyzer. The author would also like to thank TUBITAK UME, Magnetic Lab for providing insfrastracture.


  1. 1.
    V.G. Harris, Modern microwave ferrites. IEEE Trans. Magn. 48(3), 1075–1104 (2012)CrossRefGoogle Scholar
  2. 2.
    S. Hussain, N.A. Shah, A. Maqsood, A. Ali, M. Naeem, W.A.A. Syed, Characterization of Pb-doped Sr–ferrites at room temperature. J. Supercond. Nov. Magn 24, 1245–1248 (2011)CrossRefGoogle Scholar
  3. 3.
    M. Zenger, Modern ferrite technologies and products. Int. J.Mater. Prod. Technol. 9(4–6), 265 (1994)Google Scholar
  4. 4.
    A. Ghasemi, A. Hossienpour, A. Morisako, X. Liu, A. Ashrafizadeh, Investigation of the microwave absorptive behavior of doped barium ferrites. Mater. Des. 29, 112–117 (2008)CrossRefGoogle Scholar
  5. 5.
    B.V.A. Wickenden, W.G. Howell, in Ferrite quarter-wave type absorber. 1st Conf. Roc. Military Microwaves (1978), pp. 310–317Google Scholar
  6. 6.
    S.H. Mahmood, A.N. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, M. Awawdeh, H.K. Juwhari, Effects of heat treatment on the phase evolution, structural, and magnetic properties of Mo-Zn doped M-type hexaferrites. Solid State Phenom. 232, 65–92 (2015)CrossRefGoogle Scholar
  7. 7.
    S.H. Mahmood, M.D. Zaqsaw, O.E. Mohsen, A. Awadallah, I. Bsoul, M. Awawdeh, Q.I. Mohaidat, Modification of the magnetic properties of Co2Y hexaferrites by divalent and trivalent metal substitutions. Solid State Phenom. 241, 93–125 (2016)CrossRefGoogle Scholar
  8. 8.
    G. Albanese, Recent advances in hexagonal ferrites by the use of nuclear spectroscopic methods. J. Phys. Coll. 38, 85–94 (1977)Google Scholar
  9. 9.
    G. Umapathy, G. Senguttuvan, L.J. Berchmans et al., Influence of cerium substitution onstructural, magnetic and dielectric properties of nanocrystalline Ni–Zn ferrites synthesized bycombustion method. J. Mater. Sci.: Mater. Electron. 28, 17505–17515 (2017)Google Scholar
  10. 10.
    R. Babuta, I. Lazau, C. Pacurariu, R.I. Lazau, Barium hexaferrite synthesis via the citrate method. Chem. Bull. 59(73), 2 (2014)Google Scholar
  11. 11.
    Z.F. Zi, Q.C. Liu, J.M. Dai, Y.P. Sun, Effects of Ce–Co substitution on the magnetic properties of M-type barium hexaferrites. Solid State Commun. 152, 894–897 (2012)CrossRefGoogle Scholar
  12. 12.
    M.M. Syazwan, M. Hashim, R.S. Azis, I. Ismail, S. Kanagesan, A.N. Hapishah, Enhancing absorption properties of Mg–Ti substituted barium hexaferrite nanocomposite through the addition of MWCNT. J. Mater. Sci.: Mater. Electron. 28, 8429–8436 (2017). Google Scholar
  13. 13.
    M.M. Syazwan, R.S. Azis, M. Hashim, I. Ismail, S. Kanagesan, A.N. Hapishah, Co–Ti- and Mn–Ti-substituted barium ferrite for electromagnetic property tuning and enhanced microwave absorption synthesized via mechanical alloying. J. Aust. Ceram. Soc. 53, 465–474 (2017). CrossRefGoogle Scholar
  14. 14.
    M.J. Iqbal, M.N. Ashiq, Physical and electrical properties of Zr–Cu substituted strontium hexaferrite nanoparticles synthesized by co-precipitation method. Chem. Eng. J. 136, 383–389 (2008)CrossRefGoogle Scholar
  15. 15.
    İ Araz, F. Genç, Development of broadband microwave absorber and measurement of its magnetic and microwave properties. J. Supercond. Nov. Magn. 31(1), 279–283 (2016)CrossRefGoogle Scholar
  16. 16.
    F. Genç, E. Turhan, H. Kavas, U. Topal, A. Baykal, H. Sözeri, Magnetic and microwave absorption properties of NixZn0.9−xMn0.1Fe2O4 prepared by boron addition. J. Supercond. Nov. Magn. 28(3), 1047–1050 (2014)CrossRefGoogle Scholar
  17. 17.
    Z. Vakil, Effect of cerium (Ce 3+ ) doping on structural, magnetic and dielectric properties of barium ferrite (BaFe12019), 2015 IEEE International Conference on Electrical, Computer and Communication Technologies (ICECCT) (2015)Google Scholar
  18. 18.
    Z. Lalegani, A. Nemati, Effects of Ce–Co substitution on structural, magnetic and dielectric properties of M-type barium hexaferrite nanoparticles synthetized by sol–gel auto-combustion route. J. Mater. Sci.: Mater. Electron. 26, 2134 (2015)Google Scholar
  19. 19.
    Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, Structural, magnetic and microwave absorption properties of Ce-doped barium hex ferrite. J. Magn. Magn. Mater. 397, 101–107 (2016)CrossRefGoogle Scholar
  20. 20.
    R.S. Alam, M. Moradi, M. Rostami, H. Nikmanesh, R. Moayedi, Y. Bai, Structural, magnetic and microwave absorption properties of doped Ba-hexaferrite nanoparticles synthesized by coprecipitation method. J. Magn. Magn. Mater. 381, 1–9 (2015)CrossRefGoogle Scholar
  21. 21.
    I. Imran Sadiq, F. Khan, M.U. Aen, M.U. Islam, Rana, Influence of rare earth Ce3þ on structural, electrical and magnetic properties of Sr2þ based W-type hexagonal ferrites. Physica B 407, 1256–1261 (2012)CrossRefGoogle Scholar
  22. 22.
    O. Kubo, T. Ido, H. Yokoyama, Y. Koike, Particle size effects on magnetic properties of BaFe12−2xTixCoxO19 fine particles. Appl. Phys. 57(8), 4280–4282 (1985)CrossRefGoogle Scholar
  23. 23.
    ASTM D5568-14, Standard Test Method for Measuring Relative Complex Permittivity and Relative Magnetic Permeability of Solid Materials at Microwave Frequencies Using Waveguide (ASTM International, West Conshohocken, 2014)Google Scholar
  24. 24.
    I. Araz, The measurement of shielding effectiveness for small-in-size-ferrite-based at materials. Turk. J. Electr. Eng. Comput. Sci. (2018). Google Scholar
  25. 25.
    S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim, K.S. Chum, Complex permeability and permittivity and microwave absorption of ferrite-rubber composite in X-band frequencies. IEEE Trans. Magn. 27(6), 5462–5464 (1991)CrossRefGoogle Scholar
  26. 26.
    S.A. Schelkunoff, Electromagnetic Waves (D. Van Nostrand, Princeton, 1943)Google Scholar
  27. 27.
    R.B. Shulz, V.C. Plantz, D.R. Brush, Shielding theory and practice. IEEE Trans. Electromagn. Compat. 30(3), 187–201 (1988)CrossRefGoogle Scholar
  28. 28.
    C. Sun, S. Kangning, C. Pengfei, Microwave absorption properties of Ce-substituted M-type barium ferrite. J. Magn. Magn. Mater. 324, 802–805 (2012)CrossRefGoogle Scholar
  29. 29.
    H.-S. Cho, S.-S. Kim, M-hexaferrites with planar magnetic anisotropy and their application to high-frequency microwave absorbers. IEEE Trans. Magn. 35(5), 3151–3153 (1999)CrossRefGoogle Scholar
  30. 30.
    I. Ali, M.U. Islam, M.S. Awan, M. Ahmad, Effects of Ga–Cr substitution on structural and magnetic properties of hexaferrite (BaFe12O19) synthesized by sol–gel auto-combustion route. J. Alloy Compd. 547, 118 (2013)CrossRefGoogle Scholar
  31. 31.
    M.N. Akhtar, A.B. Sulong, M.N. Akhtar et al., Systematic study of Ce3+ on the structural and magnetic properties of Cu nanosized ferrites for potential applications. J. Rare Earth 36, 156–164 (2018)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Atomic Sensors LaboratoryTUBITAK National Metrology InstituteGebzeTurkey

Personalised recommendations