Fluoroethylene carbonate as the additive of lithium difluoro(oxalate)borate–sulfolane electrolytes to improve the electrochemical performance of LiNi0.5Mn1.5O4 cathode

  • Hongming Zhou
  • Bin Liu
  • Demin Xiao
  • Chengjie YinEmail author
  • Jian LiEmail author


Spinel LiNi0.5Mn1.5O4(LNMO) cathode with high voltage plateau at around 4.7 V (vs. Li/Li+) has attracted great attention. While the unsatisfactory electrochemical performance at high voltage hinders its practical application in next generation lithium ion batteries. Based on our previous research, FEC as electrolyte additive significantly improves the electrochemical performance of high voltage LNMO cell. The LNMO/Li cell with 4 wt% FEC shows the best rate capability, 76% capacity retention even at 5C. And the high temperature cycling performance of LNMO/G full cell with FEC is improved. The result from Raman indicates that FEC can transform the association structure of AGGs in the electrolytes to the salvation structure of SSIPs which increases the conductivity of electrolyte. EIS, SEM, TEM, XPS and FTIR analyses indicate that a more stable CEI film has been formed on the cathode surface with appropriate FEC as additive, which can promote the transport of lithium ions and inhibit the dissolution of transition metal elements.



Financial supports from the National Science Foundation of China, Granted No. 51371198 and Technology Project of Changsha, Granted No. K1202039-11 is gratefully acknowledged.


  1. 1.
    B. Diouf, R. Pode, Potential of lithium-ion batteries in renewable energy. Renew. Energy 76, 375–380 (2015)CrossRefGoogle Scholar
  2. 2.
    L.T. Ma, H.Q. Fan, X.Y. Wei, S.G. Chen, Q.Z. Hu, Y. Liu, C.Y. Zhi, W. Lu, J.A. Zapien, H.T. Huang, Towards high areal capacitance, rate capability, and tailorable supercapacitors: Co3O4@polypyrrole core–shell nanorod bundle array electrodes. J. Mater. Chem. A 6, 19058–19065 (2018)CrossRefGoogle Scholar
  3. 3.
    X.H. Ren, H.Q. Fan, J.W. Ma, C. Wang, M.C. Zhang, N. Zhao, Hierarchical Co3O4 /PANI hollow nanocages: synthesis and applicationfor electrode materials of supercapacitors. Appl. Surf. Sci. 441, 194–203 (2018)CrossRefGoogle Scholar
  4. 4.
    M.C. Zhang, H.Q. Fan, N. Zhao, H.J. Peng, X.H. Ren, W.J. Wang, H. Li, G.Y. Chen, Y.N. Zhu, X.B. Jiang, P. Wu, 3D hierarchical CoWO4/Co3O4 nanowire arrays for asymmetric supercapacitors with high energy density. Chem. Eng. J. 347, 291–300 (2018)CrossRefGoogle Scholar
  5. 5.
    T. Zheng, J.R. Dahn, Lattice-gass model to understand voltage profiles of LiNixMn2−xO4/Li electrochemical cells. Phys. Rev. B 56, 3800–3805 (1997)CrossRefGoogle Scholar
  6. 6.
    Y. Zhu, T. Yi, Recent progress in the electrolytes for improving the cycling stability of LiNi0.5Mn1.5O4 high-voltage cathode. Ionics 22, 1759–1774 (2016)CrossRefGoogle Scholar
  7. 7.
    J. Ma, P. Hu, G. Cui, L. Chen, Surface and Interface issues in spinel LiNi0.5Mn1.5O4: insights into a potential cathode material for high energy density lithium ion batteries. Chem. Mater. 28, 3578–3606 (2016)CrossRefGoogle Scholar
  8. 8.
    C.J. Yin, H.M. Zhou, Z.H. Yang, J. Li, Synthesis and electrochemical properties of LiNi0.5Mn1.5O4 for li-ion batteries by the metal–organic framework method. ACS Appl. Mater. Interfaces 10, 13625–13634 (2018)CrossRefGoogle Scholar
  9. 9.
    L. Yang, B. Ravdel, B.L. Lucht, Electrolyte reactions with the surface of high voltage LiNi0.5Mn1.5O4 cathodes for lithium-ion batteries. Electrochem. Solid-State Lett. 13, A95 (2010)CrossRefGoogle Scholar
  10. 10.
    H. Duncan, D. Duguay, Y. Abu-Lebdeh, I.J. Davidson, Study of the LiMn1.5Ni0.5O4/electrolyte interface at room temperature and 60 °C. J. Electrochem. Soc. 158, A537–A545 (2011)CrossRefGoogle Scholar
  11. 11.
    J. Demeaux, M. Caillon-Caravanier, H. Galiano, D. Lemordant, B. Claude-Montigny, LiNi0.4Mn1.6O4/electrolyte and carbon black/electrolyte high voltage interfaces: to evidence the chemical and electronic contributions of the solvent on the cathode-electrolyte interface formation. J. Electrochem. Soc. 159, A1880–A1890 (2012)CrossRefGoogle Scholar
  12. 12.
    M.M. Thackeray, Structural considerations of layered and spinel lithiated oxides for lithium ion batteries. J. Electrochem. Soc. 142(8), 2558–2563 (1995)CrossRefGoogle Scholar
  13. 13.
    M. Molenda, R. Dziembaj, E. Podstawka et al., Changes in local structure of lithium manganese spinels (Li:Mn = 1:2) characterised by XRD, DSC, TGA, IR, and raman spectroscopy. J. Phys. Chem. Solids 66(10), 1761–1768 (2005)CrossRefGoogle Scholar
  14. 14.
    R.J. Gummow, A. De Kock, M.M. Thackeray, Improved capacity retention in rechargeable 4 V lithium/lithium-manganese oxide (spinel) cells. Solid State Ionics 69(1), 59–67 (1994)CrossRefGoogle Scholar
  15. 15.
    Y. Xia, Y. Zhou, M. Yoshio, Capacity fading on cycling of 4 V Li/LiMn2O4 cells. J. Electrochem. Soc. 144(8), 2593–2600 (1997)CrossRefGoogle Scholar
  16. 16.
    M. Kunduraci, G.G. Amatucci, Synthesis and characterization of nanostructured 4.7 V LixMn1.5Ni0.5O4 spinels for high-power lithium-ion batteries. J. Electrochem. Soc. 153(7), A1345–A1352 (2006)CrossRefGoogle Scholar
  17. 17.
    M. Kunduraci, J.F. Al Sharab, G.G. Amatucci, High-power nanostructured LiMn2−xNixO4 high-voltage lithium-ion battery electrode materials: electrochemical impact of electronic conductivity and morphology. Chem. Mater. 18(15), 3585–3592 (2006)CrossRefGoogle Scholar
  18. 18.
    H.M. Zhou, D.M. Xiao, C.J. Yin, Z.H. Yang, K.W. Xiao, J. Li, Enhanced performance of the electrolytes based on sulfolane and lithium difluoro(oxalate)borate with enhanced interfacial stability for LiNi0.5Mn1.5O4 cathode. J. Electroanal. Chem. 808, 293–302 (2018)CrossRefGoogle Scholar
  19. 19.
    X. Sun, C.A. Angell, New sulfone electrolytes for rechargeable lithium batteries. Electrochem. Commun. 7, 261–266 (2005)CrossRefGoogle Scholar
  20. 20.
    S.S. Zhang, An unique lithium salt for the improved electrolyte of Li-ion battery. Electrochem. Commun. 8(9), 1423–1428 (2006)CrossRefGoogle Scholar
  21. 21.
    H. Zhou, K. Xiao, J. Li, Lithium difluoro(oxalate)borate and LiBF4 blend salts electrolyte for LiNi0.5Mn1.5O4 cathode material. J. Power Sources 302, 274–282 (2016)CrossRefGoogle Scholar
  22. 22.
    S.S. Zhang, Electrochemical study of the formation of a solid electrolyte interface on graphite in a LiBC2O4F2-based electrolyte. J. Power Sources 163(2), 713–718 (2007)CrossRefGoogle Scholar
  23. 23.
    X.Y. Feng, C. Shen, H.F. Xiang et al., High rate capability of 5V LiNi0.5Mn1.5O4 cathode material synthesized via a microwave assist method. J. Alloys Compds. 695, 227–232 (2017)CrossRefGoogle Scholar
  24. 24.
    X. Yuan, H. Liu, J. Zhang, Lithium-Ion Batteries: Advanced Materials and Technologies (CRC Press, Boca Raton, 2011)Google Scholar
  25. 25.
    M.D. Bhatt, C. O’Dwyer, Solid electrolyte interphases at Li-ion battery graphitic anodes in propylene carbonate (PC)-based electrolytes containing FEC, LiBOB, and LiDFOB as additives. Chem. Phys. Lett. 618, 208–213 (2015)CrossRefGoogle Scholar
  26. 26.
    J. Heine, P. Hilbig, X. Qi, P. Niehoff, M. Winter, P. Bieker, Fluoroethylene carbonate as electrolyte additive in tetraethylene glycol dimethyl ether based electrolytes for application in lithium ion and lithium metal batteries. J. Electrochem. Soc. 162, A1094–A1101 (2015)CrossRefGoogle Scholar
  27. 27.
    J. Guo, Z. Wen, M. Wu, J. Jin, Y. Liu, Vinylene carbonate–LiNO3: a hybrid additive in carbonic ester electrolytes for SEI modification on Li metal anode. Electrochem. Commun. 51, 59–63 (2015)CrossRefGoogle Scholar
  28. 28.
    I.A. Shkrob, Y. Zhu, T.W. Marin, D.P. Abraham, Mechanistic insight into the protective action of bis(oxalato)borate and difluoro(oxalate)borate anions in Li-ion batteries. J. Phys. Chem. C 117, 23750–23756 (2013)CrossRefGoogle Scholar
  29. 29.
    A. Bordes, K. Eom, T.F. Fuller, The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si-graphene composite anodes. J. Power Sources 257, 163–169 (2014)CrossRefGoogle Scholar
  30. 30.
    Y. Li, F. Lian, L. Ma et al., Fluoroethylene carbonate as electrolyte additive for improving the electrochemical performances of high-capacity Li1.16[Mn0.75Ni0.25]0.84O2 material. Electrochim. Acta 168, 261–270 (2015)CrossRefGoogle Scholar
  31. 31.
    M.H. Ryou, G.B. Han, Y.M. Lee et al., Effect of fluoroethylene carbonate on high temperature capacity retention of LiMn2O4/graphite Li-ion cells. Electrochim. Acta 55(6), 2073–2077 (2010)CrossRefGoogle Scholar
  32. 32.
    D.M. Seo, O. Borodin, S.D. Han et al., Electrolyte solvation and ionic association. J. Electrochem. Soc. 159(5), A553 (2012)CrossRefGoogle Scholar
  33. 33.
    S.D. Han, J.L. Allen, E. Jonsson et al., Solvate structures and computational/spectroscopic characterization of lithium difluoro(oxalato)borate (LiDFOB) electrolytes. J. Phys. Chem. C 117(11), 5521–5531 (2013)CrossRefGoogle Scholar
  34. 34.
    S.D. Han, S.H. Yun, O. Borodin et al., Solvate structures and computational/spectroscopic characterization of LiPF6 electrolytes. J. Phys. Chem. C 119(16), 8492–8500 (2015)CrossRefGoogle Scholar
  35. 35.
    N. Yabuuchi, K. Yoshii, S.T. Myung, I. Nakai, S. Komaba, Detailed studies of a high-capacity electrode material for rechargeable batteries, Li2Mn3-LiCo(1/3)Ni(1/3)Mn(1/3)O2. J. Am. Chem. Soc. 133, 4404–4419 (2011)CrossRefGoogle Scholar
  36. 36.
    J. Hong, H.-D. Lim, M. Lee, S.-W. Kim, H. Kim, S.-T. Oh, G.-C. Chung, K. Kang, Critical role of oxygen evolved from layered Li-excess metal oxides in lithium rechargeable batteries. Chem. Mater. 24, 2692–2697 (2012)CrossRefGoogle Scholar
  37. 37.
    S.K. Martha, J. Nanda, G.M. Veith, N.J. Dudney, Surface studies of high voltage lithium rich composition: Li1.2Mn0.525Ni0.175Co0.1O2. J. Power Sources 216, 179–186 (2012)CrossRefGoogle Scholar
  38. 38.
    L. Xing, X. Zheng, M. Schroeder et al., Deciphering the ethylene carbonate—propylene carbonate mystery in Li-ion batteries. Acc. Chem. Res. 51, 282–289 (2018)CrossRefGoogle Scholar
  39. 39.
    D.S. Lu, L.B. Yuan, J.L. Li, R.Q. Huang, J.H. Guo, Y.P. Cai, Failure mechanism for high voltage graphite/LiNi0.5Mn1.5O4 Li-ion cells stored at elevated temperature. J. Electroanal. Chem. 758, 33–38 (2015)CrossRefGoogle Scholar
  40. 40.
    Y.-M. Lee, K.-M. Nam, E.-H. Hwang, Y.-G. Kwon, D.-H. Kang, S.S. Kim, S.-W. Song, Interfacial origin of performance improvement and fade for 4.6 V LiNi0.5Co0.2Mn0.3O2 battery cathodes. J. Phys. Chem. C 118, 10631–10639 (2014)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Materials Science and EngineeringCentral South UniversityChangshaChina
  2. 2.Hunan Zhengyuan Institute for Energy Storage Materials and DevicesChangshaChina

Personalised recommendations